

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CLOUD COMPUTING IN SUPPORT OF SYNCHRONIZED
DISASTER RESPONSE OPERATIONS

by

Shawn M. Kelly
Corey A. Mazyck

September 2010

 Thesis Co-Advisors: Man-Tak Shing
 Karl Pfeifer

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Cloud Computing in Support of Synchronized
Disaster Response Operations
6. AUTHOR(S) Shawn Kelly and Corey Mazyck

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N.A.__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
During disaster response, key resources are supplied from a variety of channels including: government agencies,
volunteer organizations, commercial businesses, educational institutions and others. While many of the entities have
efficient internal methods of communication and coordination, global collaboration has historically been hindered by
political, social, and technological challenges. Following Hurricane Katrina this resulted in over-resourcing of some
in-need areas with little or no resources reaching others. While there is little argument that a global approach to
disaster response should be adopted, political and technical challenges surrounding the integration and ownership of
such a system have prevented its emergence.

This thesis examines the current challenges to collaboration between responding entities and proposes self-
synchronization using a distributed, highly scalable, Web application based on cloud computing technologies to
facilitate communication between a broad range of public and private entities without requiring them to compromise
security or competitive advantage. The proposed design applies the unique benefits of cloud computing architectures
such as automatic scaling, geographic distribution, and query performance to the disaster response domain.

15. NUMBER OF
PAGES

126

14. SUBJECT TERMS Cloud Computing, Synchronization, Collaboration, Elasticity, Disaster,
Synchronized, Common Operating Picture, Framework

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CLOUD COMPUTING IN SUPPORT OF SYNCHRONIZED DISASTER
RESPONSE OPERATIONS

Shawn M. Kelly

Major, United States Marine Corps
B.A., California State University, Long Beach, 1996

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT
and

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

Corey A. Mazyck
Major, United States Marine Corps
B.A., Campbell University, 2003

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2010

Author: Shawn M. Kelly
 Corey A. Mazyck

Approved by: Man-Tak Shing

Thesis Co-Advisor

Karl Pfeiffer
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

Dan Boger
Chairman, Information Sciences Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

During disaster response, key resources are supplied from a variety of channels

including: government agencies, volunteer organizations, commercial businesses,

educational institutions and others. While many of the entities have efficient internal

methods of communication and coordination, global collaboration has historically been

hindered by political, social, and technological challenges. Following Hurricane Katrina

this resulted in over-resourcing of some in-need areas with little or no resources reaching

others. While there is little argument that a global approach to disaster response should

be adopted, political and technical challenges surrounding the integration and ownership

of such a system have prevented its emergence.

This thesis examines the current challenges to collaboration between responding

entities and proposes self-synchronization using a distributed, highly scalable, Web

application based on cloud computing technologies to facilitate communication between

a broad range of public and private entities without requiring them to compromise

security or competitive advantage. The proposed design applies the unique benefits of

cloud computing architectures such as automatic scaling, geographic distribution, and

query performance to the disaster response domain.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. DISASTER RESPONSE ...1
C. CHALLENGES TO DISASTER RESPONSE..2

1. Disasters Are Hard to Predict...2
2. Disaster Response Is Hard to Coordinate..3

a. Top-Down Approach...3
b. Extraordinary Circumstances...3
c. People and Organizations...4
d. Interoperability..4

3. Network Architecture Problems...5
D. MEETING THE CHALLENGES..5
E. SELF-SYNCHRONIZATION..6
F. FOCUS OF THIS THESIS ...6
G. APPROACH...7
H. ORGANIZATION OF THESIS ...7

II. BACKGROUND AND LITERATURE REVIEW ...9
A. CURRENT SOFTWARE..9

1. Commercial Off-the-Shelf Software Systems....................................9
a. SCB Software ..9
b. InMotion Global Home Logistics, Lean Logistics, Appian

Logistics Software, Inc..9
c. LogiMax ..10

2. Disaster Relief Systems..10
a. Web Sites ...10
b. Web-Portal...10
c. Geospatial Information System (GIS)....................................11

B. USNORTHCOM LOGISTICS COMMON OPERATING PICTURE11
1. Current System ..11
2. Future System Features...12

C. ARCHITECTURES FOR NETWORK SYSTEMS13
1. Client-Server Architecture..13
2. Web Services...13
3. Service Oriented Architecture ..14

D. CLOUD COMPUTING...14
1. Cloud Computing in General..14
2. Types of Cloud Services...15
3. Key Considerations for Cloud Computing......................................17

E. GOOGLE CLOUD ..18
1. Google Data Centers ..19
2. Bigtable ...19

 viii

3. Google App Engine ..19

III. REQUIREMENTS...21
A. INTRODUCTION..21

1. Purpose..21
2. Assumptions and Dependencies..21

B. SYSTEM OVERVIEW ...22
1. Stakeholders ...22

a. Organizations ..22
b. Users ..23

2. Primary Stakeholder Needs ..23
a. Overview ..23

3. System Features ...24
4. Specific Functionality ..25

a. Overview ..25
b. User Management ...26
c. Organization Management ...27
d. Resource Information...27
e. Search..28

C. USE CASES..28
1. Generate Search...28

D. NON-FUNCTIONAL REQUIREMENTS...29

IV. DESIGN ..33
A. INTRODUCTION..33
B. SYSTEM CONCEPT...33
C. CLOUD COMPUTING FOR SYNCHRONIZING DISASTER

RESPONSE ..34
D. APP ENGINE PLATFORM OVERVIEW ...35
E. PROPOSED APPLICATION (SDR-1)..36

1. Model...38
a. Datastore..38
b. Proposed Classes ...39

2. View...47
a. Template Engine ...47
b. HTML Templates ..48
c. Cascading Style Sheets..49

3. Controller..49
a. Configuration File ..49
b. Request Handlers ..50

F. FEEDBACK ...53

V. CONCLUSION ..55
1. SUMMARY OF WORK..55
2. KEY FINDINGS AND CONTRIBUTIONS..55
3. EVALUATION AND FEEDBACK ...57
4. RECOMMENDATION FOR FUTURE WORK..57

 ix

APPENDIX A. SYSTEM USE CASES ..59
1. Generate Search...59
2. Add Organization...59
3. Modify Organization ...60
4. Delete Organization ...61
5. Add Store ..62
6. Add Resource Location ...63
7. Edit Resource Location ...63
8. Create User Account..64
9. Modify User Account...65
10. Delete User Account...65
11. User Login...66
12. Modify Store ...67
13. Delete Store...68
14. Add Default Resources ..68
15. Modify Default Resources ...69
16. Delete Default Resources...70
17. Post Resources Needed ..71
18. Modify Resources Needed ...71
19. Delete Resources Needed...72
20. Post Resources in Transit..73
21. Modify Resources in Transit...74
22. Delete Resources in Transit...74
23. Post Resources Delivered ..75
24. Modify Resources Delivered ...76
25. Delete Resources Delivered ...77
26. Set Resource Utilization Defaults ...77

APPENDIX B. SDR-1 ARCHITECTURE...79

APPENDIX C. SDR-1 VIEWS..85

APPENDIX D. GOOGLE DOCUMENTATION..97

APPENDIX E. USNORTHCOM FEEDBACK...99

LIST OF REFERENCES..103

INITIAL DISTRIBUTION LIST ...105

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. High-Level Use Case Diagram ..26
Figure 2. Use Case Example ...29
Figure 3. Physical Architecture (After Sanderson, 2010) ...35
Figure 4. Model-View-Controller (After Severance, 2009)..37
Figure 5. SDR-1 Deployment..38
Figure 6. User Class and Properties ..39
Figure 7. Profile Class and Properties ...40
Figure 8. Organization Class and Properties ...41
Figure 9. Location Class and Properties..42
Figure 10. Resource Class and Properties ...43
Figure 11. Search Class and Properties ...44
Figure 12. DisasterArea Class and Properties ...44
Figure 13. Entity Relationships ...45
Figure 14. Model Class and Subclasses ..46
Figure 15. Template Engine (After Sanderson, 2010) ..47
Figure 16. HTML Template Layout (After Severance, 2009) ..48
Figure 17. RequestHandler Class and Subclasses ...52
Figure 18. Architecture Overview...79
Figure 19. View Deployment ..80
Figure 20. Controller Deployment ..81
Figure 21. RequestHandler Classes and Subclass Deployment ..82
Figure 22. Model Classes and Subclass Deployment..83
Figure 23. Base Template..85
Figure 24. Add Profile Template...86
Figure 25. Edit / Delete Profile Template ...87
Figure 26. Add Organization Template...88
Figure 27. Edit / Delete Organization Template ...89
Figure 28. Set Permissions Template ..90
Figure 29. Add / Edit Location Template..92
Figure 30. Define Search Template...94
Figure 31. Search Results Template..96

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Software Technologies...12

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

ALAN American Logistics Aid Network

API Application Programming Interface

COTS Commercial Off-The-Shelf

FEMA Federal Emergency Management Agency

GIS Geographic Information System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IP Internet Protocol

ISO International Organization For Standardization

IT Information Technology

KML Keyhole Markup Language

LAT-LONG Latitude-Longitude

LOGCOP Logistics Common Operating Picture

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

PaaS Platform as a Service

SaaS Software as a Service

SDR-1 Synchronized Disaster Response Version 1

SOA Service Oriented Architecture

URL Uniform Resource Locator

USNORTHCOM United States Northern Command

W3C World Wide Web Consortium

XML Extensible Markup Language

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

We would like to extend our utmost gratitude to Dr. Man-Tak Shing and Dr. Karl

Pfeiffer for their mentorship, continued guidance, and unending patience over the past

year. We would also like to thank the U.S. Northern Command, namely Roger Smith, for

bringing this project to us and continuing to remain engaged until the end.

Shawn Kelly

I extend most sincere appreciation to my wife, Sophia, my boys, Drake and Caleb,

and to my parents, Pat and Mike. Thank you for your continued love, support, and

guidance. Without you, this achievement would not be possible. It was your

commitment and understanding that enabled me to devote so much to this project. There

were multiple times during the last two years that my focus was away from family. You

have endured all of this and for that I express my tremendous gratitude.

Corey Mazyck

I, first and foremost, give all glory and honor to my Lord and Savior Jesus Christ

who orders my every footstep. I can do nothing without you. To my wife, Pam, I truly

am grateful for all of your continued love and support. You are the wind beneath my

wings. To my beautiful daughters, Courtnee and Kayla, daddy loves you very much and

understands that these personal sacrifices were not mine alone. I thank you for your

patience and tolerance over the past two years.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

During disaster response, key resources are supplied from a variety of channels

including government agencies, volunteer organizations, commercial businesses,

educational institutions and others. While many of the entities have efficient internal

methods of communication and coordination, global collaboration has historically been

hindered by organizational and technological challenges. Following Hurricane Katrina,

this resulted in over-resourcing some in-need areas with little or no resources reaching

others. While there is little argument that a global approach to disaster response should

be adopted, challenges surrounding the integration and ownership of such a system have

prevented its emergence.

B. DISASTER RESPONSE

Disasters, natural or man-made, can be gradual or sudden and include events such

as earthquakes, tsunamis, and cyber attacks. They may also be cyclical as in the cases of

hurricanes and snowstorms, which have their own season (Wassenhove, 2006).

Each year, approximately 200 million people are impacted and 150,000 deaths

worldwide are attributed to crises and disasters. Natural disasters alone displace over 5

million people annually (Thomas, n.d.). On the relief frontline, responders often find

themselves challenged by hostile environments while attempting to assist displaced

victims.

There are four phases of a disaster relief effort: preparedness, response, recovery,

and mitigation. This thesis focuses on the first two. During the preparedness phase, an

assessment must be completed in order to get an understanding of the potential disaster

and to pre-stage the anticipated resource requirements. During the response phase,

efforts are taken to relieve individuals affected by a disaster. These efforts include

 2

providing lifesaving resources, conducting search and rescue operations, providing

medical assistance, and in some cases, deterring crime.

Disaster relief efforts require that response teams work together in a cohesive

manner before, during, and after an operation. The first 48 to 72 hours are the most

critical. During this period, when both survivors and responders are likely to be

disoriented, response efforts are less effective. A considerable number of lives will be

saved or lost depending on how well organizations are prepared and how effectively they

coordinate response efforts.

The primary responsibility for coordinating disaster response in the United States

belongs to the Federal Emergency Management Agency (FEMA), which falls under the

Department of Homeland Security. As part of the Agency's role in disaster preparedness,

FEMA has recognized resource distribution as a key element of the initial disaster

response and has identified eight resources critical to the response including: water, ice,

meals, generators, blankets, sheeting, tarps, and cots. Participation from a wide range of

public and private entities is crucial to successful distribution. Synchronization between

these entities is paramount (Fenton, 2010).

C. CHALLENGES TO DISASTER RESPONSE

1. Disasters Are Hard to Predict

A primary component of disaster response is logistics. In normal environments,

this is predictable and allows organizations to react quickly to surging demand.

Logisticians can select the most efficient transportation routes based on well thought out

metrics and algorithms. Supply chains can be optimized over time to ensure products are

assembled and delivered just as they are needed, maximizing profit and limiting

overhead. Like commercial logistics, responders' primary objective is getting the right

resource to the right place at the right time. Unfortunately, the place and time are not

given in advance so setting up and testing efficient logistics supply chains is extremely

difficult (Wassenhove, 2006).

 3

Leadership and communication are other important components to disaster

response. Local governments may be stressed and communication systems may be

unusable. Responders cannot necessarily depend on establishing communication or

receiving direction from outside sources. Internal processes are likely to be disrupted as

well.

2. Disaster Response Is Hard to Coordinate

a. Top-Down Approach

Assuming leadership and communication infrastructure remain intact, the

top-down approach to directing disaster response is still inherently challenging due to the

responding number of organizations. Even when jurisdictional and organizational

barriers are eliminated, synchronizing the actions of so many entities takes time.

Information coming from various sources must flow up to the lead organization, which

attempts to match capabilities with needs before directing a response. The time

consumed through this process translates to a delay in the initial response. With loss of

leadership and communication infrastructure, the delay increases.

b. Extraordinary Circumstances

Collaboration between diverse organizations, which is difficult under

normal conditions, can be nearly impossible in the chaotic environment resulting from a

disaster. As pointed out by Heide (1989), there are several factors that impede teamwork

in the aftermath of a disaster.

One of the reasons disaster response is difficult to coordinate is because
disasters are different from routine, daily emergencies. The difference is
more than just one of magnitude. Disasters generally cannot be
adequately managed merely by mobilizing more personnel and material.
Disasters may cross jurisdictional boundaries, create the need to undertake
unfamiliar tasks, change the structure of responding organizations, trigger
the mobilization of participants that do not ordinarily respond to local
emergency incidents, and disable the routine equipment and facilities for
emergency response.

 4

Heide's statement focuses primarily on governmental response at the local,

state, and national levels, but commercial organizations have significant resources to

contribute as well. Incorporating them into the response efforts adds another layer of

complexity to the already challenging collaboration problem.

c. People and Organizations

Many of the problems coordinating disaster relief efforts can be attributed

to individuals themselves, which are unwilling or unable to adapt to the dynamic disaster

environment. Organizations are inclined to center on core competencies rather than

looking externally to coordinate efforts. When external coordination is sought, it is more

likely to occur between organizations that are familiar and comfortable with one another.

This is not just a problem between organizations in different industries but

within industries as well. In order to survive, commercial organizations must gain and

protect competitive advantage. Sharing detailed information on capabilities and

resources could jeopardize their place in the market. Public entities also have a

responsibility to safeguard information and protect the knowledge that describes their

structure and internal processes.

Coordination is further complicated by incompatible rules and protocols

governing the various organizations. One would think that bureaucracy would not play

much of a role during disaster relief efforts, but politics and jurisdictional authority often

stifle coordination by injecting additional barriers (Heide, 1989).

d. Interoperability

A lack of technical interoperability between organizations contributes to

teamwork shortfalls. Public organizations are responsible for disaster response systems

tailored to particular situations and budgets, while commercial organizations streamline

their systems to their respective markets. During a disaster, these public and private

entities' efforts to work together are hindered by technical barriers that prevent

information sharing with two main problems: the data itself and the protocols to share it.

Information about similar resources is often described and stored in different ways by

 5

different organizations, which makes data from one organization unusable to another.

The systems and their protocols are often proprietary and incompatible, compounding the

problem. The result is a stove-piped approach to disaster response in which each

organization only sees the information it controls.

3. Network Architecture Problems

The client-server architecture is prevalent in the disaster response community

today but cannot fully address the challenges likely to arise from significant disasters.

While there are many benefits to the client-server approach, implementation often falls

short in the areas of scalability and robustness, two critical attributes for disaster response

systems.

Normal usage for disaster response systems is relatively low, requiring only a few

servers. When disasters strike, usage surges; this requires many servers to handle the

increased load. If a sufficient number of servers aren't available, performance will

degrade or the system will crash. The common solution is to add more servers with the

ultimate number being driven by budget, but it is sometimes difficult to justify dozens of

servers running idly in case they are needed for a disaster.

The physical placement of servers is also important. Servers are often located

within the buildings and geographic areas they are intended to support. This is fine for

smaller events but presents a problem when infrastructure is destroyed. Emergency

generators and redundant servers are not sufficient in these situations. The only true

measure of protection is to distribute servers geographically.

These two problems have the potential to compound one another during a

disaster, and the responders have to overcome damaged systems to do their jobs.

D. MEETING THE CHALLENGES

The disaster relief community consists of various systems. Together, these

systems are able to perform functions such as finance accountability, tracking response

efforts, and managing and outputting reports. However, there still continues to be an

 6

automated situational awareness void. No system exists to help responding entities

cooperatively to deliver resources to the right place at the right time. Technology is no

longer the limiting factor (Thomas, n.d.). The challenge is finding a way to allow diverse

entities to maintain varying organizational structures and systems, while allowing them to

share a single view of the evolving situation. A concept referred to as self-

synchronization can provide such a framework for sharing information required for an

effective, coordinated disaster response.

E. SELF-SYNCHRONIZATION

When each component or individual in a system works separately and without

external direction, using shared information to accomplish a common objective, the

system is said to be self-synchronized. This decentralized approach allows organizations

to base their actions on a shared worldview without requiring them to coordinate directly

or wait for direction. The concept is well suited to the disaster response domain, which

requires participation from a wide range of public and private organizations to be

effective. A system developed around this concept could provide a neutral zone for

organizations to share information describing resource distribution and requirements,

allowing each entity to maintain situational awareness while remaining independent and

agile. The result would be a rapid event and systematic distribution of resources.

Understandably, some organizations may be resistant to information sharing for a

number of reasons. Commercial organizations want to maintain their competitive

advantage and public organizations need to maintain a level of security or classification

around information they control. With this understanding, information needs to be shared

in abstract terms to keep the barriers to entry low and encourage voluntary participation.

F. FOCUS OF THIS THESIS

This thesis will focus on developing a system to facilitate information sharing

across a diverse range of responding organizations in the disaster response domain. It

will be guided by the following questions:

 7

1. What are the technical and organizational challenges associated with the

coordinated allocation of resources in disaster response situations?

2. Which technological approaches best address those challenges?

3. What are the software and hardware requirements for a system that would

address those challenges?

4. What software system design and implementation, based on the

aforementioned requirements, would best address challenges associated

with coordinated allocation of resources in disaster response situations?

G. APPROACH

Authors met with members of United States Northern Command

(USNORTHCOM) to better understand the current challenges and potential solutions to

collaboration in response to a disaster. Research was conducted on existing commercial

off-the-shelf solutions and implementations including USNORTHCOM's concept for a

Logistical Common Operating Picture (LOGCOP). There was also a thorough review of

network applications, Web applications, and Internet architectures to see which

applications and architectures best suit the disaster response domain.

A set of features based on input from USNORTHCOM was developed and

prioritized as critical, important, or useful. Due to time constraints, only critical features

are included in the initial design of the system. Functional and nonfunctional

requirements were derived from the feature set and better understood through use cases.

From these artifacts, a Web application based on Google's App Engine platform was

designed. The high-level design was sent to USNORTHCOM for review with their

feedback serving as the basis for future work.

H. ORGANIZATION OF THESIS

The remainder of this thesis is organized as follows:

Chapter II provides the background and research for this thesis including a review

of current software solutions and multiple network architectures. Cloud computing is

 8

examined as a new architecture with potential to address problems inherent to the disaster

response domain. Google’s App Engine is examined in-depth as a potential cloud based

platform on which to develop a solution.

Chapter III describes the functional and non-functional requirements for the

proposed disaster response system based on information provided by USNORTHCOM

and research captured in Chapter II.

Chapter IV proposes Cloud Computing as a technical solution and describes a

high-level design based on the Google App Engine platform to satisfy the requirements

established in Chapter III.

Chapter V summarizes the thesis, identifies its key contributions, and outlines a

framework for future work based on feedback from USNORTHCOM.

 9

II. BACKGROUND AND LITERATURE REVIEW

In the following section, some commercial off the shelf logistics systems and

some non-commercial systems that are being used in support of disaster relief are

reviewed. This thesis examines existing information technologies that can potentially

support the implementation of a software solution to facilitate information sharing among

disaster relief organizations.

A. CURRENT SOFTWARE

1. Commercial Off-the-Shelf Software Systems

a. SCB Software

SCB software is an emergency management database that maintains

information about current agencies which provide emergency services. It stores

information on resources, resource centers, communications, tasks, and shelters. The

system uses charts to facilitate response operations by tracking the incidents and resource

distributions. It further enables users the ability to track resources, allowing them to be

located quickly following a disaster. This system falls short in that it does not allow

responders to track logistics resources that are in transit. This is important to prevent

resource saturation in certain areas. In transit distribution is also significant to

synchronize resource distribution (SCB Software Web site, n.d.).

b. InMotion Global Home Logistics, Lean Logistics, Appian
Logistics Software, Inc.

InMotion Global Home Logistics, Lean Logistics, and Appian Logistics

Software focus on just-in-time and third-party logistics, which are important in

commercial sectors. These popular systems provide transportation management software

support, allowing organizations to effectively choose routes that increase transportation

efficiency. Some provide real-time data via Web-portals and can be adjusted to fit an

 10

organization’s specific needs. Unfortunately, none of these systems significantly

contribute to disaster response since they require more predictability than is possible in

this domain. They were made to increase the efficiency in commercial transportation but

not in relief efforts. They are best suited for their primary purpose.

c. LogiMax

LogiMax “is a browser-based system that contains everything public

warehouses need to be successful” (LogiMax Web site, n.d.). Its main purpose is to

optimize warehouse inventories. Efficient warehouse management saves companies

money. Warehouse management software such as this is currently being used in

conjunction with other disaster relief software to manage warehouse inventories within

organizations during disaster relief operations. They do not, however, solve the problem

of interoperability between organizations.

2. Disaster Relief Systems

a. Web Sites

Numerous relief organizations have Web sites, which solicit monetary

donations. These include: National Voluntary Organizations Active in Disaster, Direct

Relief International, Clinton Bush Haiti Fund, UNICEF, and World Vision. While they

are instrumental in collecting money for relief efforts, they do not provide significant

support for the initial disaster response.

b. Web-Portal

The American Logistics Aid Network (ALAN) was created after

Hurricane Katrina. This organization provides a Web-portal for commercial and non-

profit organizations that have decided to work together by donating money and resources

under a common umbrella for future disaster relief efforts. The ALAN organization in

turn gives media attention to its donor organizations. The ALAN Web-portal displays the

real-time resource needs that the organization requires to continue operating and is

 11

organized by category (American Logistics Aid Network Web-portal, n.d.). The Web-

portal is very simple to understand, easy to use, and should work to assist in preparing for

future disaster relief efforts. The advantage to this system is that it encourages businesses

and donors to work together, and it provides an intuitive interface to assist them. It does

not, however, facilitate collaboration between disaster responders to provide effective

resource distribution.

c. Geospatial Information System (GIS)

A geospatial information system (GIS) uses hardware and software to

represent different aspects of geography, allowing users to input and query data from

different viewpoints. GIS preserves data, allows for data sharing, and increases decision-

making. This technology can be used to provide enhanced and timely data with a cost

effective approach. Numerous industries, non-governmental organizations and state

governments use this technology (What is GIS, n.d.). GIS systems are generally used to

identify environmental conditions but could probably be adapted to provide some level of

logistical support. These technologies should be incorporated into the proposed system

but are not a complete solution.

B. USNORTHCOM LOGISTICS COMMON OPERATING PICTURE

1. Current System

The United States Northern Command (USNORTHCOM) Logistics Common

Operating Picture (LOGCOP) is a user defined operational picture that has numerous

layers overlaid on Google Earth imagery. It consists of over 250 data layers of critical

infrastructure, other infrastructures, geological and event-driven data. It is comprised of

over 30,000 private sector data points.

A disadvantage to USNORTHCOM’s approach is that its LOGCOP efforts are

labor intensive and absent of automation. The LOGCOP is a compilation of several

databases and ad hoc programs that are not interoperable and require human interaction

 12

to gather, transfer, and convert the data between the systems. In order for information to

be relevant, information must be updated manually in real-time or near real-time,

requiring additional work.

2. Future System Features

USNORTHCOM visualizes a system that would allow governments, commercial

businesses, non-governmental organizations, faith-based groups, and volunteer

organizations to conduct theater logistics collaboratively by sharing information through

a common operating picture. This addition would empower synchronizing organizations

thus entities would no longer have to use a top-down leadership approach for resource

distribution.

The goal is to provide a central, single source information sharing system that

responders can use to communicate details about the resource situation before

committing resources. The system would be populated at local, state, regional, and

federal levels. A single source information system would eliminate individual

organizations from having to rely on disparate systems.

Table 1 presents a summary of the features of the aforementioned software

systems.

A
u

to
m

at
ed

L
og

is
ti

cs

R
es

ou
rc

e
S

ta
tu

s

W
ar

eh
ou

si
n

g

T
ra

n
sp

or
ta

ti
on

In
fo

rm
at

io
n

S

h
ar

in
g

L
oc

at
in

g
R

es
ou

rc
e

S
ol

ic
it

 M
on

ey

SCB Software

InMotion, et al.

LogiMax
Web sites
Web-portal

GIS
LOGCOP

Table 1. Software Technologies

 13

C. ARCHITECTURES FOR NETWORK SYSTEMS

In this section, we review existing architectures and Web 2.0 technologies to

identify, which is best suited to Web application development for the disaster response

domain.

1. Client-Server Architecture

Client-server architectures distribute applications between client and server

systems which communicate with each other over a network. A client sends requests

over a network to a server, which performs necessary operations and responds to the

client.

There are several benefits to the client-server model. Interfaces are typically

designed for the lowest common denominator with regard to network bandwidth, which

is potentially useful when relying on cellular, satellite, or hastily-formed networks. The

application itself is deployed from a single location, which makes updating it much

easier. The client-server architecture allows flexibility with regard to the capabilities of

the clients. If a client’s system is limited, it can take advantage of the server’s processing

speed and storage capabilities: faster servers result in faster responses. There is a

downside. Since a server is typically responsible for handling hundreds of simultaneous

requests, when one application server is not sufficient, either a cluster of servers has to be

implemented to handle incoming traffic or more data services must be added to support

growing sets of data. Unfortunately, adding more hardware cannot usually be

accomplished quickly or inexpensively, which presents a problem in the disaster response

domain. There is also a downside to having servers centrally located as they constitute a

single point of failure if the data center is destroyed or disabled during the disaster.

2. Web Services

Web services are software systems designed to provide machine-to-machine

interoperability across a network by defining a common interface and data format (Booth

et al., 2004). Most commonly, information is formatted as Extensible Markup Language

 14

(XML) messages that follow established standards such as Simple Object Access

Protocol (SOAP) or Representational State Transfer (REST). Systems that use Web

services are divided into two types: consumers and providers. Neither relies on direct

human interaction. Web services provide a potential solution to the interoperability

problem that exists between disaster response systems, but implementing them

effectively requires significant efforts and costs on the part of responding organizations.

Security concerns also raise the barriers to entry of such a system. It is unrealistic to

assume that many organizations would invest the time to develop interfaces required to

consume these services even if they were available and secure.

3. Service Oriented Architecture

A Service Oriented Architecture (SOA) is an architecture in which software

components are provided as functional Web services over the Internet. These

components are clusters of Web services designed to work together as a complete system.

By combining components, SOAs provide much more capability than individual Web

services alone. Like Web services, they are designed to provide machine-to-machine

interactions using standard interfaces but with the added abilities for systems to search

and find the services they need in a directory and then bind them automatically. This

approach may be feasible for public organizations where a single framework can be

directed and implemented from the top down, but it is an unrealistic way to bring public

and private entities together. Even if an open framework were developed, SOAs have the

same barriers to entry as Web services.

D. CLOUD COMPUTING

1. Cloud Computing in General

The term "cloud" is often used when something is understood at a high level, but

the details about how it works are hidden. This concept is referred to as "abstraction"

since something complex is described in very simple and abstract terms. The Internet

itself is usually represented as a cloud because details describing the links, routers,

 15

switches, servers, and other infrastructure are hidden (Chu-Carroll, 2010). Often, users

do not know what computers they are ultimately connecting to when they type the

uniform resource locator (URL) addresses into their browsers. More importantly, they do

not care as long as the services provided meet their needs. Cloud computing embraces

this concept by providing resources as services over a network in the form of computing

infrastructure, development platforms and software that allow consumers to concentrate

only on things that are important to them.

The Internet is comprised of millions of computers sitting in data centers around

the world. Traditionally, a particular Web application will run continuously on one or

more servers, waiting to handle incoming requests. When incoming traffic surges, the

application is limited by the capabilities of the server or servers it is running on. When

incoming traffic stops, the application becomes idle. This approach is insufficient during

high demand and inefficient during low demand.

Cloud computing solves these problems by providing computing and storage as

services rather than offering physical machines. In the cloud, a Web application does not

run continuously on dedicated machines. Instead, the application sits dormant until it is

needed. At which point, an instance of the application is started on any of the thousands

of available servers. As the limits of each server are reached, new instances are started

on different servers to accommodate incoming requests. As demand decreases,

applications terminate, freeing up the server resources. Data is handled using a similar

approach with multiple copies of datasets spread across geographically distributed

machines.

2. Types of Cloud Services

There are three main categories of cloud services including infrastructure as a

service (IaaS), platform as a service (PaaS), and software as a service (SaaS). Each level

provides more functionality than the one before it.

Data centers require significant investment in infrastructure such as power,

cooling, storage, servers, and high-speed network connections as well as the staff needed

to install, test, and maintain the systems. Few companies have the financial resources or

 16

technical expertise to build their own infrastructure. IaaS typically leverages

virtualization to provide infrastructure in the form of computing power and storage as a

service over the Internet. Computing cycles and storage are metered and billed to the

consumers as they are used, usually on a monthly basis. Since resources are essentially

rented, initial costs are low. More importantly, scaling resources to match user demand is

automatic. One example of an IaaS provider is Amazon, which provides computing and

storage through Amazon Elastic Compute Cloud (EC2) and Simple Storage Service (S3),

respectively. EC2 users can launch and configure instances of operating systems in

which they can run their applications, while S3 users have access to unlimited space for

data storage (Amazon Web Services, 2010).

PaaS takes this concept to the next level by adding a stack of services to the

infrastructure, providing a robust platform to facilitate development of applications or

other services that can take advantage of the underlying computing power and storage

provided by the infrastructure. The concept is the same as IaaS with resources metered

and billed as they are used, but the target audience is comprised of developers looking to

create cloud-based applications and services without having to deal with configuring

operating systems or dealing with servers. They leverage application programming

interfaces (APIs) and tools provided through the platform to accelerate development and

deployment of their applications (Sun Microsystems, 2009). Google's App Engine is one

such development platform. Developers use standard languages such as Python or Java

to develop Web applications that take advantage of Google's vast computing power and

storage space through APIs and services provided by Google. Once up and running,

these applications reside in Google's cloud and are made available to users as SaaS.

SaaS refers to software deployed over the Internet rather than on individual

machines. In most cases the software is accessed via Web browser. Consumers do not

need to deal with purchasing and maintaining servers or installing and updating software.

One of the biggest benefits is services are available at any location with Internet access,

so users do not need to store documents on thumb-drives or to e-mail files home to

continue working on them, which saves time and significantly reduces version problems.

This concept becomes very powerful in collaborative applications when many users in

 17

different geographical areas share a single document, file, or set of data. Documents and

storage are backed-up by services as well, providing an additional level of protection.

There are many good examples of SaaS ranging from free applications such Hotmail and

Google Apps to complete business solutions such as SAP Business ByDesign.

3. Key Considerations for Cloud Computing

Availability is one key benefit to cloud computing. Since clouds consist of

thousands of servers that dynamically adjust to handle changing demands, individual

servers or entire data centers can be shut down without disrupting service. Resources and

services can also be provided by data centers that are physically located closest to the

incoming request. These abilities are extremely useful for maintaining uptime during

periods of maintenance, power failure, or high Internet usage and are particularly

important in domains like disaster response where responders depend on access to their

respective system to act quickly and efficiently.

The distributed architecture also allows cloud computing to be disaster resistant.

When a disaster occurs in one geographic location, only a fraction of the thousands of

worldwide servers will be affected. Data and applications backed up in geographically

distributed data centers will continue to run without interruption. This is unlike

traditional client-server architectures where a single server located near the disaster area

could result in total loss.

Elasticity is probably the clearest benefit to selecting cloud computing over other

Web-based architectures. As discussed previously in this chapter, cloud based systems

are designed to allocate computing and storage resources dynamically, balancing

incoming requests across machines or data centers. This is accomplished through

virtualization technologies, which allow applications to be decoupled from physical

servers. Instances of many different applications could run on a single server for

lightweight applications, while applications requiring more resources could be started on

many servers at once. They are never installed or saved on the application servers. They

run in memory as they are needed and terminate when they are not. This setup allows

applications to be created with very low upfront costs, since few resources are consumed

 18

during development and testing. More importantly, the application will scale from a few

users to a few million in a matter of seconds, providing uninterrupted services to

unanticipated surging demand.

There are some potential pitfalls to cloud computing that also need to be

considered. The primary benefits of cloud computing, elasticity and redundancy, require

that applications and data be distributed and replicated across data centers. This presents

security issues, especially when those data centers reside in other countries, which have

different data protection laws. There are many approaches to addressing these concerns,

ranging from simple encryption to development of tightly controlled private clouds.

Some entities may choose to avoid cloud computing all together for sensitive data.

Whatever the approach, security needs to be considered before sensitive data is deployed

and replicated across thousands of servers.

Another concern with cloud computing is data ownership. Who really owns the

data once it is deployed across data centers? When a user pays for a cloud service, the

user is essentially outsourcing data storage, relinquishing some amount of control to the

service provider. This issue becomes more complicated when the provider of SaaS relies

on a different entity to provide IaaS. In all cases, users and organizations need to

thoroughly read and understand service agreements and contracts before entrusting their

data to service providers. As with security, the sensitivity and value of data need to be

considered. Once proprietary or private data has been compromised, damages may be

irreversible.

E. GOOGLE CLOUD

There are various corporations that provide cloud computing infrastructure,

platforms, or software as a service including Google, Oracle, Amazon, Microsoft, and

Netsuite. Google, known for its search engine, provides software as a service in the form

of Gmail, Google Calendar, Google Sites, Google Talk, Google Video, and Google

Message Security. Google uses cloud computing to support a number of these

applications.

 19

1. Google Data Centers

Google's cloud consists of several state-of-the-art data centers. These massive

facilities handle data crunching for Google's search engine and other Web-based

applications. They also include massive amounts of distributed storage needed to hold

information describing Web sites across the Internet. Every search term ever submitted

to the Google search engine is stored somewhere in one of Google's data centers. Each

data center is physically secure and climate controlled. And, just one data center alone

can contain up to 45,000 servers (Google Data Center Video, 2010).

2. Bigtable

Bigtable is the base for data storage at Google. It is not a database but a

distributed, persistent, multi-dimensional sorted map, which manages petabytes of data

across thousands of servers. Even though Bigtable is similar to a database, it does not use

the relational database model. Google clients’ store their data on Bigtable where their

data can be spread across various servers. Google uses this system to store a number of

its projects, including Google Web Indexing and Google Earth. Google applications

place varying demands and latency requirements on Bigtable; its flexibility allows it to

provide high performance solutions to meet those demands. It is a self-managing system

that will automatically adjust when servers are added or removed. “Bigtable has

achieved several goals: wide applicability, scalability, high performance, and high

availability. It is used by more than sixty Google products and projects, including

Google Analytics, Google Finance, Orkut, Personalized Search, Writely, and Google

Earth” (Chang, et al., 2006).

3. Google App Engine

App Engine is provided by Google as a PaaS for developers that want to take

advantage of Google computing and data resources to provide their own SaaS. Google

App Engine lets users build high-traffic Web applications without having to manage

high-traffic infrastructure” (About Google App, n.d.). A user can build an application on

a workstation or laptop using one of Google App Engine’s primary programming

 20

languages and subsequently deploy it on Google's Cloud. Like all PaaS, developers are

only billed for the resources consumed each month with the first 500 megabytes of

storage and 5 million page-views free of charge. Users only pay for resources used in

excess of their free monthly resource allocation. And as a developer, one can limit or

control the maximum number of resources an application uses. This feature protects the

developer from over spending. The platform can also be used to give access to some

users while denying privileges to others (Chu-Carroll, 2010). Google App Engine uses a

system called Datastore as a scalable alternative to a database for persisting data.

Detailed information on Google App Engine and the Datastore is available in Chapter IV

and Appendix B.

 21

III. REQUIREMENTS

A. INTRODUCTION

1. Purpose

The proposed system, Synchronized Disaster Response version 1.0 (SDR-1), will

be a publically available system designed to foster real-time information sharing openly

and transparently across all levels of the public and private sectors, resulting in efficient

use of resources during national disasters. The system will be able to receive and

maintain information, including location, quantity, and description of critical resources.

The information will be attained from public, private, educational, volunteer, and faith-

based organizations. Once a disaster occurs, the system will be able to efficiently

generate a common picture to show critical resource shortfalls and provide detailed

information to government, commercial and volunteer entities to improve joint response.

Organizations moving critical resources will also be able to post resource data, which will

include the type and quantity of resources being transported, the intended location, the

final destination, and the time of arrival. The SDR-1 system will include easy to use

Internet-based forms for data entry, high-speed data storage, a graphical map-based

interface to display the location of resources needed, resources in transit, and resources

distributed. This chapter describes the functional and non-functional requirements for

SDR-1.

2. Assumptions and Dependencies

The success of SDR-1 will depend on several factors, including participation from

a diverse group of public and private entities, the reliability and availability of wide area

networks in areas from which response is being coordinated, and the accuracy of

information submitted by users with those entities.

 22

B. SYSTEM OVERVIEW

1. Stakeholders

a. Organizations

SDR-1 will provide collaboration across a diverse set of private and public

entities and users in response to a significant event. Entities can be divided into five

general categories: government, commercial, non-profit, faith-based, and volunteer. Each

entity is comprised of one or more potential users, which can be categorized into one of

three general groups: managers, responders, and administrators.

(1) Government entities such as USNORTHCOM, Federal Emergency

Management Agency (FEMA), National Guard, and fire and police need a common

operating picture describing the quantities and locations of specific resources as well as

the ability to identify locations where resources are needed for the purpose of disaster

response planning. USNORTHCOM is looking for a solution to share information with

other public entities as well as build awareness of resources potentially available from

private entities.

(2) Commercial entities such as Wal-Mart, Home Depot, or small

privately owned stores are interested in supporting their respective communities in

preparation for or in response to disasters. In order to accomplish this, they need an easy

way to share information describing critical resources contained at each store location.

Many private entities will volunteer to transport resources directly. These entities need

access to shared information to see where their contributions could best be used.

(3) Non-Profit Organizations, such as the American Red Cross, play a

significant part in the collection and distribution of critical resources. They need to share

information describing the status of their resources and established distribution locations

with public agencies. They also want to build situational awareness through a common

operating picture.

 23

(4) Volunteer organizations and faith based groups want information

about how they can best contribute to disaster response. Groups with the means to collect

and distribute critical resources want a means to gather situational awareness without

hindering professional responders. They need an easy method for discovering where

resources might be needed as well as an easy method to communicate where they have

distributed resources. Additionally, they will provide information to the system

describing resource shortfalls they will discover.

b. Users

SDR-1 must support a variety of users who will access the system to

contribute, view, or extract data. The users can be divided into various categories:

(1) Responders are personnel who actively provide relief assistance

during a disaster response. Some examples of responders are helicopter crewmen, police

officers, fire and rescue support, relief organizations, and religious groups. Responders

also include operations personnel or other liaisons that provide data between the system

and other responders.

(2) Managers are those individuals within organizations who have

direct knowledge of the organizations’ resources and are authorized to submit that

information to SDR-1. They have the wherewithal to forecast the quantities and status of

resources on hand, and they manage their organizations’ resource data in SDR-1.

(3) Administrators are those select individuals who have additional

privileges in SDR-1. They are charged with a wide range of duties required to maintain

the system, identify and correct problems, and assist other users as necessary.

2. Primary Stakeholder Needs

a. Overview

While the system will provide collaboration across a diverse group of

stakeholders, every aspect of the system can ultimately be traced back to the specific

 24

needs of the users. In order to foster improved collaboration between the various entities

involved in disaster response, the following needs must be addressed:

(1) Users need the ability to collect, maintain, and distribute

information describing the location and quantity of critical resources from a wide range

of public and private entities.

(2) Users need the ability to collect information describing resources

needed at a specific location, resources in route to a specific location, and resources that

have arrived at a specific location from a wide range of public and private entities.

(3) Users need the ability to collaborate with public and private

entities using a logistical common picture to share detailed information about resources in

a geographic area, including available resources and requests for resources, across all

levels of the public and private sectors using a Web-based mapping solution.

(4) Users need a robust and highly available system with the ability to

automatically scale in response to increased demand.

(5) Users need a highly intuitive system that can be learned in a few

hours.

3. System Features

Stakeholder needs can be satisfied by the set of features below, which address

both function and quality aspects of the system. The features have been divided into

three priority levels: critical features, important features, and useful features. The

baseline for SDR-1 delineates the features that will exist in the first developmental

iteration.

 Critical Features

 F01: User account creation and management

 F02: Organization creation and management

 F03: Create stores / distribution locations within an organization

 F04: Describe the resource situation at various geographical locations,

 including the need for resources, the delivery of resources, and the

 25

 resources in transit

 F05: Query and filter data, returns a data set

 F06: Export query results as a KML file

 F07: Scalable to thousands of simultaneous users

 F08: Disaster Resistant: system must be able to survive a disaster

 F09: Remain operable in areas with low bandwidth

------------------------------------Baseline for SDR-1 v1.0-----------------------------

 Important Features

 F10: Describing resources for multiple distribution locations

 F11: Display search results for organizations or resources on a virtual map

 F12: Performance: Real-time update of information

 F13: Reliability near 100%

 F14: Availability near 100%

 F15: Intuitive Web-based user interface

 Useful Features

 F16: Based on open-source programming language and common practices

4. Specific Functionality

a. Overview

The functional aspects of SDR-1 can be divided into four high level

functional requirements: User Management, Organizational Management, Resource

Information, and Common Operating Picture. High-level requirements can be

summarized by the use case diagram in Figure 1.

 26

Figure 1. High-Level Use Case Diagram

b. User Management

User management allows users to control all aspects of their accounts and

will provide administrators with tools to manage multiple user accounts. Users will have

the ability to login and modify or delete their accounts.

1.1 The Create User Account functionality will allow a user to create

an account.

1.2 The Modify User Account functionality will allow a user to edit

attributes associated with an account.

 27

1.3 The Delete User Account functionality will allow a user to delete

an account.

1.4 The User Login functionality will authenticate users with their

usernames and passwords, enabling appropriate permissions.

1.4.1 Passwords will be a minimum of six and a maximum of twelve

alpha-numeric characters in length.

1.4.2 Users will have the ability to change passwords.

1.4.3 Users will have the ability to contact the administrator when they

have forgotten their passwords.

1.4.4 The system administrator will have the ability to delete user access

and modify access levels.

1.4.5 Organizational managers will have the ability to modify or delete

their organization’s respective users’ access.

c. Organization Management

Organization management will provide certain users with the means to

control various aspects of their respective system accounts.

2.1 The Manage Organization functionality will allow a user to add,

modify, or delete an organization’s attributes, which includes its address, phone number,

building number, or associated resources.

2.2 The Manage Physical Location functionality will allow a user to add,

modify, or delete an organization’s building, which is identified by its attributes,

including stores, distribution centers, and headquarters.

d. Resource Information

Resource Information allows users to submit information to the system

that describes the status of resources and resource needs.

 28

3.1 The Status of Resource functionality allows users to describe resources

in transit, delivered resources, or resources that are needed at a specific location.

3.2 The Set Resource Utilization Defaults functionality allows a user to set

default numbers for utilization per person calculations, such as the amount of water

needed per person, per day in a given environment.

e. Search

The Search will allow users to search information submitted by other

users and organization query and view resource data and locations.

4.1 The Query and Filter Data functionality will allow a user to query

data and return a data set.

4.2 The View Map functionality will allow a user to view the results of a

query geographically on a virtual map. This function will include the ability to pan,

zoom, or rotate the map to focus on any portion in greater detail.

4.3 The Download functionality will allow a user to download and name a

set of search results as a KML file, which can be used with Google Earth or similar

geospatial programs.

C. USE CASES

A compilation of all use cases and use case diagrams for SDR-1 can be found in

Appendix A. An example use case is present in Figure 2.

1. Generate Search

 Scope: SDR-1.

 Level: User-Goal.

 Primary Actor: Responder.

 Stakeholders and Interests:

 - Users: During crises, users need a means of locating resources to build the

Search in support of planning efforts.

 29

 - Individuals/private organizations: Requires the need to locate resources to

build a Search to increase their situational awareness.

 Preconditions:

 - User is at the Search generation interface.

 Postconditions:

 - A Search has been generated.
 - All locations and their associated resources are depicted on the Search.

 Main Success Scenario:

1. User defines query criteria for and name for Search and submits it.

2. System stores the criteria and adds to a lists of save Searches.

3. User selects a Search from the list to view.

4. System returns a map showing the Searches.

5. System returns a test list of resources below the map.

 Alternative Flows:
5b. User wants to adjust search and returns to Step 1.

Figure 2. Use Case Example

D. NON-FUNCTIONAL REQUIREMENTS

1.0 Usability

1.0.1 System shall comply with ISO usability standards.

1.1 Learn ability

1.1.1 Novice users should be able to create or modify an account within 120

 seconds.

1.1.2 Users should be able to submit a need request within 120 seconds.

1.1.3 Users should be able to locate a resource on a virtual map within 60

 seconds.

1.1.4 Novice users should be comfortable navigating the site within 10 minutes.

 30

1.2 Aesthetics

1.2.1 The software shall make effective use of repeating visual themes.

1.2.2 The software shall be visually consistent even without graphics.

1.2.3 The site shall use moderate, consistent colors with easily readable fonts.

1.3 Consistency

1.3.1 Appearance and performance shall be consistent across all browsers.

1.3.2 The system will leverage object-oriented frameworks when possible.

1.4 Documentation

1.4.1 All documentation shall be available electronically within the software.

1.5 Compatibility

1.5.1 Software shall be compatible with modern Internet browsers including

 Firefox 3.0, Safari 4.0 and Explorer 7.0.

1.5.2 Software shall be compatible with HTML 5.0 Web standards.

1.5.3 Software will not require a third party plug-in such as Adobe Flash,

 Microsoft Silverlight or Google Gears.

1.5.4 Software shall work on all Microsoft XP, Vista, Windows 7.0, MAC OS

 10.4 or later editions.

2.0 Reliability

2.0.1 The system shall be available 99 % of the time.

 31

2.1 MTTR

2.1.1 Mean time to repair shall be less than 60 minutes.

2.2 MTBF

2.2.1 Mean time between failures shall be greater than 120 days.

2.3 Accuracy

2.3.1 The geospatial latitude-longitude shall be a float point with precision to

 six decimal places.

3.0 Performance

3.1 Throughput

3.1.1 Systems shall accommodate a minimum of 500 users simultaneously.

3.2 Resource Consumption

3.3.1 Computing resources should scale to accommodate high use situations.

3.4 Response Time

3.4.1 System shall have an average transaction time of less than 3 seconds.

3.4.2 Resource update shall be reflected on the map within an average of 15

 seconds regardless of the bandwidth.

 32

3.5 Scalability

3.5.1 The system shall have the ability to scale from a minimum of 500 users to

 a maximum of 15,000 simultaneous users, bandwidth dependent.

4.0 Supportability

4.0.1 All changes to software shall automatically be reflected across the entire

 software spectrum.

4.1 Maintainability

4.1.1 Corrective maintenance shall be performed in accordance with ISO

 standards.

4.2 Installability

4.2.1 The system shall require no additional installation beyond Web browser.

 33

IV. DESIGN

A. INTRODUCTION

The requirements captured in the previous chapter were used as a roadmap to

guide decisions, development, and high-level design of the proposed system. This

chapter discusses concepts behind the design and describes the system in terms of its

model-view-controller architecture.

B. SYSTEM CONCEPT

This is not an inventory or supply-chain management system. Based on the

LOGCOP concept, its purpose is to improve disaster response by providing an integrated

and interactive “neutral zone” where individuals and organizations can share information

openly and transparently across all levels of the private and public sectors. It

accomplishes this through a Web-based interface that organizations can use to voluntarily

describe the disposition of resources without requiring direct communication between the

organizations themselves.

Through SDR-1, public and private organizations can abstractly describe

resources within their stores, distribution centers, or warehouses without disclosing

detailed information that might jeopardize security or competitive advantage. Instead of

providing inventories, which include brand, SKU, quantity, etc., organizations will use

Web-based forms to describe resources in abstract terms, such as five pallets of bottled

water or three 200-watt power generators. This approach is less of a deterrent to

companies that want to participate but cannot afford to share detailed information. Once

information is submitted through a lightweight, Web-based interface, it is stored in a data

repository. The stored information describes resources at different locations and is

available to all participating organizations through the same Web-based interface and can

be used as a starting point for a rapid, coordinated response.

 34

SDR-1 also provides a means to coordinate resource distribution across

organizations using self-synchronization. Responding organizations share information by

using simple, Web-based forms to describe the status of resources at specific locations.

For example: resources delivered to Monterey High School or needed at Dodger

Stadium. Each organization can adjust their individual distribution based on shared

information in the system.

Organizations can use the Web-based system to define search criteria such as

location, time, or resources. Results can be returned as text, points on a virtual map, or a

KML file, which can be imported into another system. Since SDR-1 does not track

inventories for any organization, a delivery of resources will not cancel out or correspond

to a similar request for resources from the same location. They are two discrete pieces of

information that help describe the situation at a given location. The two pieces of

information would show up side-by-side if placed on a virtual map. Calculations to

derive net values are planned for future versions of the system.

C. CLOUD COMPUTING FOR SYNCHRONIZING DISASTER RESPONSE

Cloud computing is well-suited to the proposed application and the disaster

response domain. Cloud based applications do not actually run on any of the available

servers until they are needed. When a user types a Web address into a Web browser, an

instance of the application is started on one of the thousands of available servers and

continues to run in memory as long as users are requesting it. As more users request the

site, additional instances are started on different servers to handle the increased traffic.

When traffic slows the various instances are terminated, freeing the computing resources

for other applications. There are three key benefits to this approach:

1. Data and computing resources are distributed geographically, providing

the ability to run an application from any available data center in any region. This is

important since the location of a future disaster is impossible to predict. The application

will continue to run even if data centers in the region are destroyed.

 35

2. Applications scale automatically to accommodate hundreds of thousands

of concurrent users. This is another important characteristic for a disaster response

system.

3. Compute resources are charged only as they are used. Development,

testing, and normal usage require very few computing or data resources. Greater costs

will not occur unless the application is heavily used in response to a disaster at which

point it will be justified. This is more reliable than purchasing a small set of servers that

may be overwhelmed during a disaster and less expensive than purchasing and

maintaining dedicated computer clusters that would remain idle the majority of the time.

D. APP ENGINE PLATFORM OVERVIEW

Our proposed application is designed to take advantage of the Google App Engine

platform, which provides robust infrastructure comprised of thousands of servers and

petabytes of data storage. Interaction between the App Engine components is illustrated

in Figure 3, which follows an HTTP request through the system.

Figure 3. Physical Architecture (After Sanderson, 2010)

 36

Incoming requests are received by the frontend, which determines the intended

application based on URL specified. Once the destination is identified, the frontend

evaluates whether the request maps to one of the application’s static files handled by a set

of dedicated static file servers or if it requires processing through the application itself.

Static files such as pictures are returned to the client directly by the static file servers.

Requests that need processing require an instance of the application to be running on one

of the available application servers. A new instance, based on the App Master, is started

on an available application server if no instances are already running. More instances are

started as required to handle additional traffic. The request is directed to the instance,

which interacts with persistent data in the Datastore or the memory cache, performs

necessary operations, prepares a response to the request and returns it to the client

(Sanderson, 2010).

E. PROPOSED APPLICATION (SDR-1)

The proposed application separates development concerns into three primary

areas: model, view, and controller. The model refers to persistent data kept in the

Datastore. The view consists of the HTML templates, CSS, and Javascript that define the

user interface, and the controller is comprised of event handlers within the Python code

that orchestrate interactions between the model and view. This separation allows changes

in one area without requiring changes to another, providing flexibility and updatability

(Severance, 2009).

 37

Figure 4. Model-View-Controller (After Severance, 2009)

The SDR-1 architecture is based on the Model-View-Controller pattern, with each

element deployed to different physical servers in the cloud-computing environment. The

architecture consists primarily of a Web browser running a user’s personal computer and

the SDR-1 application which consists of a model, view, and controller. The controller

and dynamic aspects of the view are deployed together and instantiated on available

application servers to handle incoming requests, while static portions of the view are

deployed on servers optimized to handle static files. SDR-1’s model resides in the

Google Datastore, which sits atop Google’s Bigtable, a distributed data repository. As

depicted in Figure 5, the controller depends on the model and view to provide data and

structure, respectively, before it can respond to the incoming request.

 38

Figure 5. SDR-1 Deployment

1. Model

This section describes the structure of data that persists in the Datastore over time.

a. Datastore

The Datastore is neither a relational nor object database but a complex

distributed data storage system based on Google Bigtable. The schemaless object

Datastore has a query engine, atomic transaction support, and a robust data modeling

API. It is set apart from traditional databases by an architecture that enables automatic

scaling to petabytes of data. Datastore makes extensive use of indexes for high

performance reads across thousands of physically distributed machines. This replaces the

relational approach of normalizing data and joining tables to store information with a

distributed approach, which stores information in rows, not tables. Additional

information on the Datastore can be found in Appendix C.

 39

b. Proposed Classes

Using requirements from the previous chapter, data models were

developed to capture real-world objects needed for the proposed disaster response

system. The identified objects fall into one of seven classes: User, Profile, Organization,

Location, Resource, Disaster Area, and Search.

1. User Class

The User class, Figure 6, is controlled by Google and represents

users across the Google ecosystem. When a user signs up for Google Apps their

information is stored in their Google account, which only Google and the user can access.

Google does provide a service that allows App Engine applications to determine if a user

has been successfully authenticated using their Google Account or OpenID. Once

signed-in, the service provides SDR-1 access to selected user properties including:

nickname, e-mail, and user ID, the federated user ID and federated provider for OpenID

users. We leverage these services to take advantage of the existing Google infrastructure

as well as the OpenID platform now being piloted by the Government Services

Administration (Thibeau, 2009). A detailed description of the User service provided by

Google and OpenID can be found in Appendix D.

Figure 6. User Class and Properties

2. Profile Class

Since our application cannot directly access Google’s User class,

another class is needed to store additional user information need by SDR-1. The Profile

class, Figure 7, fulfills this function by capturing properties including: first name, last

name, phone number, organization, and authorization level. The Profile also stores the

 40

user ID of the associated user. A password is not listed among the included properties

since it is handled through the authentication services provided by Google. The proposed

system is designed to have four levels of authorization, levels 0 through 3, which define a

user’s ability to input or edit data associated with a specific organization, such as defining

store locations or resources within those stores.

Figure 7. Profile Class and Properties

3. Organization Class

All public and private organizations are represented by the

Organization class, Figure 8, which includes the properties: name, URL, category, and

user ID. The name and URL refer to the official organization name and Web site

respectively. They are used to ensure uniqueness of the organization within the system.

The category describes the organization as: government, commercial, non-profit, faith-

based, or volunteer. The user ID associates the organization with the user who last

submitted the information describing the organization. This provides a means to trace

changes to a user within the organization. Other information includes: phone numbers,

physical addresses, and e-mail addresses. This information is associated with physical

locations and is handled through the location class.

 41

Figure 8. Organization Class and Properties

4. Location Class

A location captures information describing a geographic position

and its associated resources. A location might be a distribution center, warehouse,

organization headquarters, or retail store. A location could also refer to a position in the

disaster area where resources are required, resources are delivered, or resources are en

route. The goal of the location class, Figure 9, is to collect pertinent information in the

most streamlined manner, limiting input required by users. Properties needed to describe

a location include: address, FEMA region, lat-long, location type, resources,

organization, and user ID. The address, FEMA region, and lat-long describe the physical

position. The type is selected from headquarters, warehouse, distribution center, store,

request, delivery, or transit. The user ID and organization are associated with a user who

submits the location. The resources property contains a reference to each of the resources

associated with this location, defining a one-to-many relationship between a location and

resource. As stated previously, the Datastore is not a relational database. The resources

property is actually a list reference property, each one providing a link to one resource

associated with the location. The user's authorization level determines what information

a user can submit. All users can submit request, delivery, and transit locations while only

level-2 and level-3 users can add headquarters, warehouses, distribution centers or stores.

It is important to note that all resources associated with a request location type are treated

as negative numbers, while all other location types are treated as positive numbers.

Transit location types refer to the ultimate destination where resources are intended they

do not capture the transit route. They are differentiated from delivery location types by

color in the view.

 42

Figure 9. Location Class and Properties

5. Resource Class

The Resource class, Figure 10, is designed to capture information

describing resources in abstract terms, avoiding unnecessary details such as brand or

stock-keeping unit (SKU). Each resource is associated with a specific location and

described using seven properties: resource type, palletized, number, weight each, unit of

measure, quantity each, and quantity total. The resource type is currently limited to one

of eight choices representing FEMA's Big-8 resources. Future iterations could expand

the resource choices but not at the expense of usability. The palletized property is a

Boolean resolved to true if the resource is on standard pallets. Number refers to the

number of standard pallets for palletized resources or the number of individual items if

they are not palletized. Weight is also measured per pallet or per individual item for

items not palletized. The unit of measure captures the unit that best describes the item.

For water, the unit of measure would be liters. For power generators, it would be watts.

For blankets, it would be individual units. The quantity each describes the amount per

pallet or per item in terms of the unit of measure. The quantity total is the result of the

quantity each multiplied by number of pallets or number of individual units, depending

on whether it is palletized.

 43

Figure 10. Resource Class and Properties

6. Search Class

The search class, Figure 11, is used to define a set of search criteria

used as filters when querying the Datastore for locations and their associated resources.

Searches can also be shared with all members of an organization. It is important to

understand that search results are not being stored or shared. Only the criteria used to

define the search is stored. This approach is designed to eliminate repetition by allowing

a user to define the criteria for a search and use it many times as the situation evolves.

The ability to share a search is designed to prevent redundant work within an

organization. Search properties include a user defined name, a Boolean property that

resolves to true if the search is shared across the organization, as well as the user ID and

organization of the user who defined the search. Additional properties that define filter

criteria include time, organization, resource type, location type, FEMA region, and

address. Incomplete address such as state or zip can be submitted.

 44

Figure 11. Search Class and Properties

7. Disaster Area Class

The DisasterArea class, Figure 12, is used to describe a

geographical area designated by FEMA or USNORTHCOM following a disaster.

Properties include a name for the designated disaster area, a list of points that define it, a

Boolean to determine if it is shared to all other users, and the user ID of the individual

who submitted it.

Figure 12. DisasterArea Class and Properties

 45

The diagram in Figure 13 shows the relationships between the

various classes using standard UML notation. For example: At least one but possibly

many users belong to one organization.

Figure 13. Entity Relationships

8. Model Class

Individual classes must persist in the Google Datastore. This is

accomplished through the Model class provided through Google App Engine, which

already contains methods to take data obtained from a user and put it in the Datastore.

Each of the SDR-1 classes is a subclass of the Model class and can perform all operations

of the Model class. This includes operations to get data objects from the Datastore and

put data objects into the Datastore or perform queries over all objects in the class. The

diagram in Figure 14 captures all of the operations that belong to the Model class and

extend to the SDR-1 sub-classes. Detailed information on the Model class and Datastore

API can be found in Appendix C. The Model class is depicted in Figure 14.

 46

Figure 14. Model Class and Subclasses

 47

2. View

The view consists of a set of HTML templates and cascading style sheets that

define the look and feel of the proposed application. When the controller needs a view

generated, it calls on the template engine to create it. A template engine is included as

part of the Web application framework of the App Engine Platform.

a. Template Engine

The template engine, Figure 15, merges data retrieved from the model

with appropriate HTML templates to generate a view that can be returned to the user.

The path to the template and values to be inserted into the template are passed as

arguments from a request handler in the controller to the template engine, which replaces

tagged variables in the template with data retrieved from the model to produce the Web

page, as illustrated in Figure 15 (Sanderson, 2010).

Figure 15. Template Engine (After Sanderson, 2010)

 48

b. HTML Templates

The structure of the view depends on a set of HTML templates, Figure 16,

which describe content presented to the user through the hypertext markup language.

Inheritance and aggregation are supported by the template engine. The templates allow

the content to be divided into a hierarchy of extendable and reusable templates, which are

combined to create a coherent Web page for the user. The header, footer, and navigation

elements are common to every Web page within the application and represented through

a single, reused "Base" template. Changes made to this template are reflected across all

pages that extend them. A series of individual page templates extend the base template,

providing additional content to describe each page. Detailed illustrations and

explanations of the templates can be found in Appendix B.

Figure 16. HTML Template Layout (After Severance, 2009)

 49

c. Cascading Style Sheets

Cascading style sheets (CSS) are used to separate the appearance of the

application Web page with regard to colors, fonts, and layouts from the structure written

in HTML. Imbedding the style within each HTML page would reduce maintainability

since style changes would need to be repeated on every page to achieve consistency.

CSS resolves the problem by providing style definitions that are shared across multiple

pages. This approach eliminates redundant code, resulting in consistent Web pages that

require less maintenance (Bert, Celik, Hickson & Lie, 2009). The presentation for SDR-

1 is described through a single cascading style sheet shared by all HTML templates. The

style is sent from a static file server directly to the client to provide the correct

presentation details to the browser as it interprets the HTML returned by the system.

3. Controller

The controller contains the logic of the SDR-1 application. It receives client

requests through the frontend and routes them to the appropriate handler, which performs

operations and interacts with the model and view before responding to the request. In the

case of SDR-1, the controller consists of a configuration file in addition to a series of

request handlers.

a. Configuration File

In order for the frontend to direct incoming traffic, it depends on the

configuration file to provide a route to the appropriate request handler based on URL

paths included in a request. This mapping is specified in a YAML file that tells the

frontend which python script needs to be loaded onto the application server in order to

handle the request. This file also defines how long the application should be cached in

memory on the application server and whether the HTTP connection needs to be secured

(Sanderson, 2010).

 50

b. Request Handlers

A series of request handlers are responsible for dealing with incoming

HTTP requests for different URLs within the application. In some cases, more than one

URL is mapped to a single handler which analyzed the URL to see how to respond to it.

Request handlers contain the code for exchanging data with the model and view in order

to respond to the user. When an incoming request is received by the application, an

instance of the request handler associated with the URL is created. The instance

performs the necessary operations such as getting information from the Datastore and

rendering a page before it returns the response and terminates (Google App Engine, n.d.).

Google provides a base class called RequestHandler to deal with incoming

requests. However, it does not achieve everything needed by the SDR-1 application. To

resolve this, a new subclass called MainHandler was created. MainHandler extends the

RequestHandler class by adding methods to assess user privileges and call for pages to be

rendered. These methods are available to the SDR-1 subclasses, which extend

MainHandler to IndexHandler, ProfileHandler, OrgHandler, OrgMembersHandler,

LocationHandler, SearchCriteriaHandler and SearchResultsHandler. This hierarchical

approach allows the functionality to be defined at the appropriate level, reducing

repetition and likelihood of mistakes. The organization of these classes is illustrated in

Figure 16 and further described in Appendix C.

1. RequestHandler Class

The RequestHandler class, provided by the Google App Engine

platform as part of the Web application framework, serves as the base class for all of

SDR-1’s request handlers. It has two attributes: one to hold the request and one to hold

the response. It also has several methods to handle a variety of HTTP requests. A

complete list of methods provided by the RequestHandler class is shown in Figure 17

(AppEngine API, 2010). Detailed information describing the RequestHandler class is

included in Appendix C.

 51

2. MainHandler Class

The MainHandler class extends the RequestHandler class by

adding four new methods. The first two, isNewUser and isValidUser, are used to add

new users or authenticate existing users, respectively. App Engine provides built in

support for designating administrators. The isAdminUser method checks to see if the

current user has administrator permissions. The final method, called renderPage,

substitutes the appropriate values into a designated template so the rendered page can be

returned to the user.

3. SearchResultsHandler Class

This class extends the MainHandler class and provides a

significant amount of SDR-1 functionality beyond querying the Datastore and returning

filtered, sorted results. It contains the necessary functions to pass latitude-longitude

information needed by the view to produce a map using MapRender.js. Additionally, it

contains a function to convert query results to KML, which can be sent to the e-mail

address of the currently authenticated user.

4. LocationHandler Class

The LocationHandler class extends the MainHandler class and also

has PUT and GET methods adapted to work with incoming requests and data dealing

with Locations. The handler must call the geocoding Web service to translate addresses

to lat-long coordinates or from coordinates to an address if one exists. If a given address

cannot be resolved to a set of coordinates, the user must be asked to provide a different

address. A confirmed address is required for every location with a structure, but latitude-

longitude coordinates are sufficient for request, delivery, and transit locations.

Geocoding is provided through Google Services and documented in the Google Maps

API in Appendix D.

5. Remaining classes

The remaining classes all extend the MainHandler class, using the

same techniques for authenticating users and rendering pages. Each subclass has private

attributes and its own PUT and GET methods adapted to the respective requests. These

 52

classes have no special functionality beyond providing a means to interact with the

Datastore and view in order to return the appropriate response to the user.

Figure 17. RequestHandler Class and Subclasses

 53

F. FEEDBACK

A member of the USNORTHCOM working group in charge of developing

software solutions to enhance disaster response collaboration evaluated the SDR-1 design

and provided several pages of detailed feedback, which highlighted key benefits of the

proposed system and identified required areas for additional research. The complete

memorandum can be found in Appendix E.

The memorandum stated that the cloud computing concept implemented on the

App Engine Platform is an excellent solution for the proposed system since it will

potentially keeps costs low and ownership neutral, which is a key element of the system.

The approach to handling locations was also appreciated, since it addressed request and

distribution information in addition to resources located within physical structures such

as stores. From a logistics point of view, the use of pallets as a standard way to measure

resources was notes as, “a thoughtful and necessary inclusion for system

implementation.” The ability to store search criteria and the use of a simple HTML

interfaces were also appreciated.

Several items that need to be addressed in future iterations were also discussed.

The system will eventually need to expand beyond FEMA’s Big 8 resources and provide

some method for non-standard resources to be identified. More flexibility is required

within the search, allowing wider ranges when filtering by time and providing more

options for sorting results. The memorandum suggested that results could auto update

every few minutes without interaction from the user. A detailed analysis of permissions

was also requested.

Overall, the memorandum concluded, “This is a thoroughly researched and well

written thesis that needs a prototype built on its foundation soonest so that the program

can move forward after a hand-on test.” The complete memorandum can be found in

Appendix E.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSION

1. SUMMARY OF WORK

This thesis examined current disaster response systems in order to discern and

leverage their benefits for attaining synchronization in disaster response domains. The

reviewed systems and architectures, which work well in the commercial sectors, do not

provide a means for effective collaboration between organizations required for disaster

response. The thesis also reviewed business complexities that affect organizations'

willingness to work together during disaster response. Stakeholders require a neutral

zone in which information can be voluntarily and openly shared between responding

entities, both public and private, without compromising security or competitive

advantage. An in depth review of stakeholders and their respective needs was conducted

and translated into a prioritized set of features, which were the foundation of hardware

and software requirements. A high level design was developed based on the research and

stakeholder requirements. The proposed design was submitted to USNORTHCOM, the

primary stakeholder for feedback. USNORTHCOM highlighted system strengths,

identified concerns, and provided a path forward.

2. KEY FINDINGS AND CONTRIBUTIONS

A significant finding was that many communication breakdowns in the disaster

domain occur due to a lack of interoperability between the organizations’ information

systems. Additionally, current systems often become ineffective as client-server

architectures develop bottlenecks during peak usage. While Web services and service-

oriented architectures provide potential solutions to the interoperability problems, they do

not address surging traffic and degraded infrastructure common to a large disaster. This

scalability problem is a big issue because large disasters require systems that can handle

significant volumes of data even when infrastructure has been partially destroyed.

Research revealed that cloud computing, which can take advantage of Web services and

service-oriented architectures, is resistant to catastrophic failure due to its distributed

 56

nature. The cloud computing architecture is built around the concept of elasticity,

allowing cloud-based applications to scale across thousands of servers to handle

incoming traffic. These abilities are critical in the disaster response domain.

The main contribution of this thesis is a high-level design for a proposed system

named Synchronized Disaster Response 1, for providing a means to synchronize disaster

response through shared awareness of the initial and evolving logistical situation in the

disaster area. The SDR-1 design is predicated on the USNORTHCOM LOGCOP’s

conceptual model and the aforementioned critical requirements, which resulted from

extensive background and research. The design prototype fosters a new model for

accomplishing disaster response. It is developed from the mindset of minimizing barriers

to voluntary participation by capturing resource information in terms that do not threaten

security or competitive advantage. It is also one of the few current system designs created

solely for enhancing disaster response communication and synchronization. This system

is designed to reside on Google's cloud and take advantage of elasticity and redundancy

provided by thousands of servers in Google datacenters around the world.

The system accomplishes its objective by providing organizations with a way to

share information describing resource stockpiles during the mitigation phase, providing

responders insight to potential resource availability prior to a disaster. During disaster

response SDR-1 fosters information sharing through a lightweight user interface that

helps organizations submit information describing resource needs and the movement of

resources in the disaster area. Any individual or organization can use a standard Web

browser to access SDR-1's search function and build a logistical picture describing the

resource situation in a particular area. Search criteria can be defined once and used many

times to provide the most current information. By consulting shared data that describes

evolving logistical situations, organizations can determine where to deploy their assets

for maximum impact. By broadcasting their movements, organizations can build the

situational awareness of other responding entities. Direct coordination between

responding organizations is not required for a rapid and evenly distributed response.

 57

It must be noted that all systems are simply mechanisms for accomplishing goals.

SDR-1 will only be effective if responders at every level incorporate its use in their

disaster response plans.

3. EVALUATION AND FEEDBACK

The proposed design was submitted to members of USNORTHCOM involved

with their Logistical Common Operating Picture and familiar with disaster response for a

comprehensive evaluation. Since these stakeholders originally outlined a conceptual

model that SDR-1 was predicated upon, their insight and detailed feedback on the

proposed design is important in determining the way forward. The feedback highlighted

benefits of leveraging cloud computing for the proposed system and agreed with many

design decisions including implementation of the location class, the use of pallets for a

standard of measure, and the ability to store search criteria for future use. It also noted

areas of focus for future work, including more options for setting search criteria and

sorting results as well as a full review of permissions implementation. A memorandum

containing the detailed feedback is included in Appendix E. It recommends the project

move forward to a functional prototype.

4. RECOMMENDATION FOR FUTURE WORK

As noted in the evaluation feedback, the high-level design provides a sufficient

foundation to begin iterative development. It recommends that future work be focused on

developing a functional SDR-1 prototype that can be tested by USNORTHCOM, FEMA,

and entities interested in disaster response. The initial prototype should incorporate

concerns highlighted by the feedback in Appendix E, while holding all additional features

for follow-on iterations, each with thorough testing by stakeholders to ensure the

application is easy to use and the barriers to entry remain low.

After the system has been deployed and thoroughly tested, researchers can

leverage Web services to extend the system to be used on mobile devices such as cellular

phones and tablets to be used in conjunction with cellular or hastily formed networks in

the disaster area.

 58

Disasters will continue to occur. Computer technology is available to address

many of the technical challenges and, if implemented properly, it can bring organizations

together to solve common problems. The proposed SDR-1 design is a first step towards

improving the disaster response community through synchronizing efforts. Future

research, development, and participation are required to continue forward in the disaster

response domain.

 59

APPENDIX A. SYSTEM USE CASES

1. Generate Search

 Scope: SDR-1.

 Level: User-Goal.

 Primary Actor: Responder.

 Stakeholders and Interests:

 - Users: During crises, users need a means of locating resources to build the

Search in support of planning efforts.

 - Individuals/private organizations: Requires the need to locate resources to

build a Search to increase their situational awareness.

 Preconditions:

 - User is at the Search generation interface.

 Postconditions:

 - A Search has been generated.
 - All locations and their associated resources are depicted on the Search.

 Main Success Scenario:

6. User defines query criteria for and name for Search and submits it.

7. System stores the criteria and adds to a lists of save Searches.

8. User selects a Search from the list to view.

9. System returns a map showing the Searches.

10. System returns a test list of resources below the map.

 Alternative Flows:
5b. User wants to adjust search and returns to Step 1.

2. Add Organization

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

 60

Stakeholders and Interests:

 Public/Private Entities have an interest in contributing information to be used in

generating Searches for emergency response. Owners, managers, and workers

need a simply way to add organization information into the system.

Preconditions:

- User is logged into the system.

Postconditions:

- New organization is created in the system.

Main Success Scenario:

1. User submits organization name, address, type, and URL.

2. System validates organization as unique.

3. System updates and saves data describing the organization.

Alternative Flows:

2b. System is not able to resolve address to a Lat-Long. System notifies the

 user and returns them to Step 1.

2c. Organization already exists in the system. System notifies the user and

 returns to step 1.

3. Modify Organization

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

- Owners, managers, and workers need a simple way to modify organization

 information in the system.

Preconditions:

- User is logged into the system.

- User has permission to modify the organization.

Postconditions:

 - Organization information is modified in the system.

 61

Main Success Scenario:

1. User selects organization to be modified.

2. System displays organization attributes.

3. User overwrites organization attributes.

4. System prompts user for a password.

5. User submits password.

6. The system updates and saves data describing the organization.

Alternative Flows:

5b. Password fails to authenticate user. System notifies user and returns to

 Step 2.

4. Delete Organization

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

 - Users must be able to remove organizations from the system when the

 organization no longer exists or wants to participate.

Preconditions:

- Organization must exist in the system.

- User must have permission to delete organization.

Postconditions:

- The organization is removed from the system.

Main Success Scenario:

1. User logs in.

2. User selects option to delete the organization.

3. System displays list of organizations.

4. User identifies the organization to be deleted.

5. System requests confirmation with a password.

6. User submits password.

 62

7. Organization is deleted from the system.

Alternative Flows:

6b. Password fails to authenticate user. User is prompted to resubmit

 password or quit.

5. Add Store

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

 - Public/Private Entities: A prime consideration is that owners and

 managers need the ability to create their organizations’ distribution centers

 in the system.

Preconditions:

- Organization must exist in the system.

- User must have permission.

Postconditions:

- New distribution center is created in the system.

- The distribution center is associated with an organization.

Main Success Scenario:

1. User selects option to add new distribution center.

2. System displays information fields for new distribution center.

3. User submits the distribution center information.

4. System validates distribution center and resolves address to a Lat-Long.

5. System adds the distribution center to the system.

Alternative Flows:

4b. System is not able to resolve address to a Lat-Long. User is directed to

correct the address. Returned to Step 3.

4c. Distribution center already exists in the system. User is directed to update

the existing system.

 63

6. Add Resource Location

Scope: SDR-1.

Level: User-Goal.

Primary Actor: User.

Stakeholders and Interests:

 All actors require accurate location information in order to maintain an

 accurate search for forecasting, planning and distributing resources.

Postconditions:

- New resource request or location created in the system.

Main Success Scenario:

1. User logs in.

2. User selects option to add a resource location.

3. System displays information fields for resource request.

4. User submits location, POC, phone number, resources, and quantities.

5. System validates information.

6. System displays submitted information back to the user for confirmation.

7. System captures date, time, and IP address of user.

8. Resource request is added to the system.

Alternative Flows:

5b. Information is invalid. User is prompted to correct information.

7. Edit Resource Location

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder.

Stakeholders and Interests:

 - All actors require accurate location information in order to maintain an

 accurate search for forecasting, planning and distributing resources.

Postconditions:

 64

- Resource location edited in the system.

Main Success Scenario:

1. User logs in.

2. User selects option to edit resource location.

3. System queries the user for the location identification number.

4. User submits the location identification number to the system.

5. System displays information fields for the resource location.

6. User edits the location.

7. System validates information.

8. System requests confirmation from the user.

9. System captures the submitted data, date, time, and IP address of user and

10. System modifies the respective location.

Alternative Flows:

7b. Information is invalid. User is prompted to correct information.

8. Create User Account

Scope: SDR-1.

Level: User-Goal.

Primary Actor: User

Stakeholders and Interests:

 - Distinct users accounts are needed to provide proper permissions, security,

 and communication within the system.

Postconditions:

- A new user is created in the system.

- User is associated with an organization.

Main Success Scenario:

1. User selects option to create a new user account.

2. System displays information fields for account request.

3. User submits first name, last name, username and password.

4. System ensures username is unique.

 65

5. System captures user data, date, time, and IP address.

Alternative Flows:

4b. System notifies user that username already exist and then returns to Step

9. Modify User Account

Scope: SDR-1.

Level: User-Goal.

Primary Actor: User.

Stakeholders and Interests:

- Once a user account is created, users need to update information within

 the system so it accurately describes the user.

Postconditions:

- A user’s information is modified in the system.

Main Success Scenario:

1. User logs in.

2. User selects option to edit user account.

3. System displays information account fields.

4. User edits the information and confirms with password.

5. System captures updated data, date, time, and IP address of user.

Alternative Flows:

5b. Password fails to authenticate user. User is prompted to resubmit

 password.

10. Delete User Account

Scope: SDR-1.

Level: User-Goal.

Primary Actor: User.

Stakeholders and Interests:

 66

- All users who wish to no longer participate in the system need a way to

 delete its information.

Preconditions:

- User must exist in the system.

Postconditions:

- The applicable user is removed from the system.

Main Success Scenario:

1. User logs in.

2. User selects option to delete the user account.

3. System requests confirmation with a password.

4. User submits password.

5. User is deleted from the system.

Alternative Flows:

5b. Password fails to authenticate user. User is prompted to resubmit

 password.

11. User Login

Scope: SDR-1.

Level: User-Goal.

Primary Actor: User.

Stakeholders and Interests:

- Users who wish to access the system need to have a means to access the

system with minimal personal intrusion and maximum simplicity and expediency.

- System owners need a mean of validating users and setting access levels in

order to protect user and organization information from non-respective entities.

Preconditions:

- User account exists.

Postconditions:

- User is logged into the system.

Main Success Scenario:

 67

1. User submits user identification and password.

2. System authenticates user and displays the main page.

Alternative Flows:

2b. System fails to authenticate and returns to step 1.

12. Modify Store

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

- All users require correct distribution center information in order to

 maintain an accurate search for forecasting, planning and distributing

 resources.

Preconditions:

- Organization must exist in the system.

- User must have permission.

Postconditions:

- Distribution center information is modified.

Main Success Scenario:

1. User selects distribution center and chooses option to modify distribution

 center.

2. System displays the distribution center information fields.

3. User edits the information and submits it to the system.

4. System validates information.

5. System requests confirmation with a password.

6. User submits password.

7. System captures the date, time, and IP address of user.

8. System updates the distribution center data.

Alternative Flows:

 68

4b. System is unable to resolve address to Lat-Long. User is directed to

 correct the address.

7b. Password fails to authenticate user. User is prompted to resubmit

 password.

13. Delete Store

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

- Managers and administrators need the ability to delete distributions

 submits that no longer exist.

Preconditions:

- Organization must exist in the system.

- User must be a member of the organization.

Postconditions:

- Distribution Center data is removed from system.

Main Success Scenario:

1. User logs in.

2. User selects a distribution center and option to delete it.

3. System requests confirmation with a password.

4. User submits password.

5. System deletes distribution center.

Alternative Flows:

5b. Password fails to authenticate user. User is prompted to resubmit

 password.

14. Add Default Resources

Scope: SDR-1.

 69

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

- Users need the ability to create default resource quantities and amounts

 that will be reflected in each store within the organization.

Preconditions:

- Organization must exist in the system.

- User must have permission.

Postconditions:

- New resource is created in the system.

Main Success Scenario:

1. User selects option to add a resource.

2. System displays information fields to be filled in.

3. User submits information to create new resource.

4. Resource is added in the system.

5. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

15. Modify Default Resources

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

- Users need the ability edit default resource quantities and amounts that

 will be reflected in each store within the organization.

Postconditions:

- Resource description is modified in the system.

Main Success Scenario:

1. User selects option to modify a resource.

 70

2. System displays information fields to be changed.

3. User submits information to modify existing resource.

4. Resource is modified in the system.

5. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

16. Delete Default Resources

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Manager, Administrator.

Stakeholders and Interests:

- Users need the ability to delete default resource quantities and amounts

 that will be reflected in each store within the organization.

Preconditions:

- Default resource must be in the system.

Postconditions:

- Resource description is modified in the system.

Main Success Scenario:

1. User selects option to delete a resource.

2. System displays resource to be deleted.

3. User submits information to delete existing resource.

4. System prompts user to confirm deletion with a password.

5. User submits password.

6. Resource is deleted in the system.

7. System captures date, time, and IP address of user.

Alternative Flows:

6b. Password fails to authenticate user. User is prompted to resubmit

 password.

 71

17. Post Resources Needed

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to submit a quantifiable resource for a specific

 location and the approximate number of people the resource is expected to

 support.

Preconditions:

- Previously logged in.

Postconditions:

- Resource with the respective quantities, location and the approximate

 number of people the resource is expected to support is added to the

 system.

Main Success Scenario:

1. User selects option to add a resource.

2. System displays resource information fields to be filled in.

3. User submits information to create the resource.

4. System validates the resource.

5. Resource is created in the system.

6. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

18. Modify Resources Needed

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

 72

- Responders need the ability to modify the resource list’s resources,

quantities, specific location, and/or the approximate number of people the

resources is expected to support.

Preconditions:

- Previously logged in.

Postconditions:

- Resource list in the system contains the correct resources, quantities,

 specific location, and approximate number of people the resources is

 expected to support.

Main Success Scenario:

1. User selects option to modify a list of resources.

2. System displays resource list information fields to be modified.

3. User submits information to update the list.

4. System validates the list.

5. List is modified in the system.

6. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

19. Delete Resources Needed

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to delete resource lists.

Preconditions:

- Previously logged in.

- Resource list is in the system.

Postconditions:

- Resource list is deleted from the system.

 73

Main Success Scenario:

1. User selects option to delete a resource list.

2. System displays resource lists currently in the system.

3. User selects resource list to be deleted.

4. System prompts user to confirm deletion with a password.

5. User submits password.

6. System deletes resource list.

7. System captures date, time, and IP address of user.

Alternative Flows:

5b. Password fails to authenticate user. System prompts user to resubmit

password.

20. Post Resources in Transit

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to submit a list of resources that are in transit

to a specific location.

Preconditions:

- Previously logged in.

Postconditions:

- System updated with a list of in transit resources, quantities, and the

 estimated arrival time for a specific location.

Main Success Scenario:

1. User selects option to add in transit resource list.

2. System displays list of information fields to be filled in.

3. User submits information to create the list.

4. System validates the resource list.

5. In-transit resource list is created in the system.

 74

6. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

21. Modify Resources in Transit

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to modify a list of resources that are in transit

 to a specific location.

Preconditions:

- Previously logged in.

Postconditions:

- System updated with a list of in transit resources, quantities, and the

 estimated arrival time for a specific location.

Main Success Scenario:

1. User selects option to add in transit resource list.

2. System displays list of information fields to be filled in.

3. User submits information to create the list.

4. System validates the resource list.

5. In-transit resource list is created in the system.

6. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

22. Delete Resources in Transit

Scope: SDR-1.

Level: User-Goal.

 75

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to delete a list of resources that are in transit

 to a specific location.

Preconditions:

- Previously logged in.

Postconditions:

- A list of in transit resources has been removed from the system.

Main Success Scenario:

1. User selects option to delete in transit resource list.

2. System displays list of in transit resource lists.

3. User selects in transit resource list to be deleted.

4. System prompts user to confirm deletion with password.

5. User submits password.

6. System deletes in transit resource list.

7. System captures date, time, and IP address of user.

Alternative Flows:

6b. Password fails to authenticate user. User is prompted to resubmit

password.

23. Post Resources Delivered

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to submit a list of resources that has arrived at

 a specific location.

Preconditions:

- Previously logged in.

Postconditions:

 76

 - System updated with a list of resources and quantities that arrived at a

 specific location.

Main Success Scenario:

1. User selects option to add arrival resource list.

2. System displays list information fields to be filled in.

3. User submits information to create the arrival resource list.

4. System validates the arrival resource list.

5. Arrival resource list is created in the system.

6. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

24. Modify Resources Delivered

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to modify a list of resources that has arrived at

 a specific location.

Preconditions:

- Previously logged in.

Postconditions:

- System updated with a list of resources and quantities that arrived at a

 specific location.

Main Success Scenario:

1. User selects option to modify arrival resource list.

2. System displays arrival resource list information fields to be filled in.

3. User submits information to update the arrival resource list.

4. System validates the arrival resource list.

5. Arrival resource list is modified in the system.

 77

6. System captures date, time, and IP address of user.

Alternative Flows:

4b. Information is invalid. User is prompted to correct information.

25. Delete Resources Delivered

Scope: SDR-1.

Level: User-Goal.

Primary Actor: Responder, Administrator.

Stakeholders and Interests:

- Responders need the ability to delete a list of resources that previously

 arrived at a specific location.

Preconditions:

- Previously logged in.

Postconditions:

 - A list of resources that previously arrived was removed from the system.

Main Success Scenario:

1. User selects option to delete arrival resource list.

2. System displays arrival resource lists in system.

3. User submits information to delete the arrival resource list.

4. System prompts user to confirm deletion with password.

5. User submits password.

6. Arrival resource list is deleted from the system.

7. System captures date, time, and IP address of user.

Alternative Flows:

5b. Password fails to authenticate user. User is prompted to resubmit

password.

26. Set Resource Utilization Defaults

Scope: SDR-1.

 78

Level: User-Goal.

Primary Actor: Administrator.

Stakeholders and Interests:

- Administrators need the ability to set default numbers for utilization per

 person calculations, such as the amount of water needed per person, per

 day in a given environment.

Preconditions:

- Previously logged in.

Postconditions:

- System resource utilization default set.

Main Success Scenario:

1. User selects option to set default quantities.

2. System displays default list.

3. User submits default quantities.

4. System prompts user to confirm default with password.

5. User submits password.

6. System sets and saves default quantities.

7. System captures date, time, and IP address of user.

Alternative Flows:

6b. Password fails to authenticate user. User is prompted to resubmit

password.

 79

APPENDIX B. SDR-1 ARCHITECTURE

SDR-1 consists of three elements beyond the application code itself: Google

Services, the App Engine Platform and Google Datastore. In the cloud environment, the

exact deployment of these packages cannot be traced to a single server or set of servers,

so they are depicted in Figure 18 as existing on servers within Google's cloud and

referenced by their respective addresses. As discussed in Chapter IV, instances of

applications are started on applications to handle incoming requests. In the case of SDR-

1, the controller and part of the view will be instantiated on application servers, while

static documents needed for the view will be served directly from optimized static files

servers to increase performance. Model classes are persisted as entities in the Datastore

where they can be retrieved by the controller.

Figure 18. Architecture Overview

 80

As described in Chapter IV, instances of applications are started on applications

to handle incoming requests. In the case of SDR-1, the controller and part of the view

will be instantiated on application servers, while static documents needed for the view

will be served directly from optimized static files servers to increase performance. Model

classes are persisted as entities in the Datastore where they can be retrieved by the

controller.

Code comprising the view, Figure 19, is divided into two physical locations.

Templates used to render pages based on data returned from the Datastore are deployed

on application servers alongside main.py. All CSS and Javascripts should be deployed

on static files servers to improve application performance.

Figure 19. View Deployment

 81

As described in Chapter IV, the controller, Figure 20, consists of two files:

app.yaml and main.py. The app.yaml file is used by frontend servers to determine how

incoming requests should be directed, while main.py contains the all of the application

logic.

Figure 20. Controller Deployment

The main.py consists of several handlers to deal with incoming request as well as

classes needed to exchange data with the Datastore. Deployment of these classes and

locations of their superclasses, provided by Google App Engine, are illustrated in Figures

21 and 22.

 82

Figure 21. RequestHandler Classes and Subclass Deployment

 83

Figure 22. Model Classes and Subclass Deployment

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

APPENDIX C. SDR-1 VIEWS

The Base template, Figure 23, defines the header, navigation, and footer for the

entire application. All other templates within the application extend this template,

allowing high-level changes to be made in only one place and cascaded throughout the

application.

Figure 23. Base Template

 86

The Add Profile template, Figure 24, is used to capture information about the

user, including first and last name, e-mail address, and phone number. No username or

password is required here since users authenticate with their Google or OpenID

credentials. Information submitted here is tied to their Google or OpenID account.

Figure 24. Add Profile Template

 87

The Edit / Delete Profile template, Figure 25, is essentially the same as the Add

Profile template. Previously submitted information is populated into the form for the user

to edit. The permission level of each user is displayed in the profile, but it is not editable.

When the user presses the update button, profile data updates. A user can also choose to

delete their profile at anytime.

Figure 25. Edit / Delete Profile Template

 88

The Add Organization template, Figure 26, is used to capture high-level

information about an organization including its name, URL, and type. It is possible that

organizations in different states will have the same name, so URL is used to differentiate

organizations. An organization might have a headquarters and several stores. These are

handled through the Locations template.

Figure 26. Add Organization Template

 89

The Edit / Delete Organization template, Figure 27, is used to update

organizational information. The name, URL, and type can be changed at any time and

administrators have the ability to remove the organization.

Figure 27. Edit / Delete Organization Template

 90

The Set Permissions template, Figure 28, is used to set permission levels, ranging

from Level 0 to Level 3, for users in an organization. This is only available to users with

Level 3 permissions.

Figure 28. Set Permissions Template

 91

The Add / Edit Location template, Figure 29, is used to capture all information

about geographic positions and their associated resources. The position can be submitted

as an address or lat-long coordinate, either of which will be used to resolve the other.

There are currently seven types of locations: headquarters, warehouses, stores, requests,

deliveries, and resources in transit. The first four represent physical structures with only

one being allowed to occupy a particular geographic position. The last three are used to

describe the evolving situation in a disaster area and could be stacked on the same

geographic position over time. For example, one responder could submit a request for

water at a specific position at 1200 and another responder could submit a different

request at 1800. Both requests are allowed by the system, will be returned in a search,

and will be included in any calculations.

Users have the option of submitting information in terms of pallets or raw

numbers. Most organizations move and store resources using pallets so given the option

to submit information in this format should reduce the initial burden. In all cases the total

quantity is stored in non-palletized units, liters for example.

Recent submissions are listed at the bottom. This provides the user with ability to

confirm an entry was saved, quickly adjust mistakes, or delete an entry from the system.

If a user needs a list of all entries this can be accomplished with a search.

 92

Figure 29. Add / Edit Location Template

 93

The Define Search template, Figure 30, can be used to set detailed criteria for a

search once and saved as a "Search" to be reused over time. The search will only be

saved if a name is submitted in the Search Name field. Once saved, the search will show

up in a list at the bottom of the page along with previously defined Searches. Executing

one of the searches is accomplished by clicking on a search name. Searches can be

edited or deleted as required.

By default every location in the system submitted in the past 48 hours will be

returned. However, several options exist that allow data over a 96-hour period to be

manipulated. Searches can be narrowed by organization, geographic area, FEMA region,

time, location type, or resource. Searches can also be shared across an organization in

which case they will appear with saved searches at the bottom of the page.

 94

Figure 30. Define Search Template

 95

The Search Results template, Figure 31, will display the results of a search on a

map and as a list sorted by resource type. The advantage of sorting on resource type is

that net quantities can be calculated based on the resource deliveries and requests and be

treated as positive and negative numbers respectively. Resources in transit are treated as

positive numbers as well but depicted as yellow dots on the map.

Two buttons are provided at the top of the page. Update executes the current

search again, obtaining the most recent results. E-mail KML will execute a function that

translates the locations into a KML and e-mails to the signed-in user.

 96

Figure 31. Search Results Template

 97

APPENDIX D. GOOGLE DOCUMENTATION

Additional information describing the Google App Engine Platform can be found

on the Google App Engine Web site: http://code.google.com/appengine/docs/. Complete

documentation of the Users Python API, Datastore API, Web application Framework,

and services are provided there. Since the App Engine Platform is continuously

evolving, a copy of the current documentation is provided with this thesis as a snapshot

of what was used for designing SDR-1.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

APPENDIX E. USNORTHCOM FEEDBACK

10 Sep 10

MEMORANDUM FOR MAJOR SHAWN M. KELLY, USMC

Subject: Naval Post-graduate School thesis observations and comments.

1. Disclaimer. The positions taken in this memorandum are based on personal
experience as a member of a NORAD and USNORTHCOM working group that that was
developing solutions for an open-source, user-defined common operational picture to
enhance disaster response situational awareness. The positions taken in this document
do not reflect the official positions of NORAD and USNORTHCOM.

2. General Summary. Conceptually, the thesis answers all the most pertinent questions
in order to code and implement a prototype that would have immediate impact and
usability. The system design seems solid, balancing ease-of-use and simplicity, while
remaining powerful for its purpose and intent. The cloud computing aspect keeps the
system always available and scalable while alleviating issues that may arise concerning
single organization ownership.

3. Detailed discussion of specifics.
a. The cloud computing concept is an excellent solution for this type of system. Not only
will it potentially keeps costs low, but keeps ownership neutral, which is a key element of
the system. It allows the community to be the owner, versus a particular organization,
which reduces the potential of the system becoming proprietary or one entity controlling
the content. Additionally, the fact that disasters can take out all communications in the
affected area (which would include the ability to use SDR-1), cloud computing keeps the
system always available. Replicating the system across working servers alleviates the
problem that a centralized server setup presents if a disaster were to strike its physical
location and render it unavailable.

b. The inclusion of a location Class that was not just defined by physical structures, but
also includes the request, delivery and transit tags is a key addition to the system. This
setup allows the user to see exactly what the picture looks like for a specific disaster at a
specific time and specific location.

c. The palletized concept is a thoughtful and necessary inclusion for system
implementation. This allows a user to understand if there is a requirement for additional
personnel, forklifts and/or vehicles to load or off-load resources at the source or
destination.

d. The ability for a saved search to be reused to re-query the system on latest
information based on the original criteria set is extremely helpful. This concept simplifies
Web-based searching and saves time for users.

e. Particularly liked the fact that search results are not stored, only the criteria used to
define the search is. It seems that that this technique should allow the system to stay as

 100

small and efficient as possible, but will still provide a way to do forensics on what
searches have occurred, if the need arises.

f. The simplicity of the html structure and user interface was perfect. The way the html
interface was designed keeps the output complex while proving the user an easy to use
tool. Understanding that not all participants may be computer savvy, simple Web pages
that deliver robust information is the target, and the concept, as designed, has taken that
factor into account.

4. Detailed discussion/questions of concepts to be included.
a. For future iterations of the system, there may be need to expand FEMA’s Big-8
resources to include medical supplies, and other large categories of resources that are
commonly used in disaster response. Additionally, a requirement for a write-in text field
would allow individuals to enter in information not listed as one of the standard
resources. While it is understood that it may be difficult to document and search an
unrestricted text field, repetitive data (resources not listed as a standard resource, but
are being utilized over and over again as listed in the write-in field) can be pulled from
the system and incorporated in later iterations as a standard resource offering the best
solution to the end user.

b. While the ability to search by time is very useful, it may be beneficial to increase the
periods offered in order to make the search more comprehensive based on response
actions in relation to the disaster. Based on the National Response Framework, initial
responders are on scene in the first 24 hours, state and National Guard responders
between the 24-72 hour mark, and Federal/DOD responders after 72 hours.
Understanding the needs of the disaster area following an incident, more hourly choices
should be available, especially by front loading the initial response. As an example,
choices at hours 2, 4, 8, 12, 24, 48, 72, 96, and 120 with the range increasing as the
time from incident increases.

c. The search criteria currently return results by category only. While this is useful,
results should be returned by either category or by most recent, as selected by the user.
Very large organizations that transcend one resource, may want to know what resources
across the spectrum have been requested most recently in order to fill that request as
soon as possible.

d. An auto-update feature for search requests may be useful as well. This may be for the
latest search request only, or as selected by the user if there are more than one. The
interval of automatic updates may have to depend on the amount of data that has to be
passed, or the how often data is entered in to the system, in order to keep it useful and
efficient.

e. For future iterations, a way to view forensics or historical data for resource response
to a particular incident would be very beneficial. This would be a very useful tool to
model future disaster responses according to past successes and/or failures.
Theoretically, this system would allow a user to see all of the activities for a particular
disaster after the event. This information could be invaluable to major responder
organizations such as FEMA as well as responders at all levels. Anyone could query
historical data and make plans to enhance future response efforts after viewing lessons
learned.

 101

f. For additional security in future systems, a requirement to do forensics on who
accesses the system and what data they are sharing and or requesting may be useful.
This function may be currently available based on the log-in scheme that is discussed in
the thesis.

g. For community-wide access, is it possible for someone to be added to the system if
they are not attached to an organization? It may be important in the future to supply a
way to track small-business, ‘mom-and-pop’ shops or even individual contributors to a
disaster using this system. Not all of these will have a specific URL to make a unique ID
in the system.

h. As the system develops, will there be a way to make push out an automatic reminder
for personal or organizations to update their information? Since each URL entered gets
a unique identifier in the system, there may be a need to figure out a way to resolve
URLs if one changes, or if businesses change location, name, or resources.

i. The search function may need to have the ability to search using wild cards and/or
Boolean functions, especially if the Resource Class contains a text-field. Understanding
that not everyone will enter the similar information in the same way, this could be a
challenge, but at least allows the community of users a more robust solution to query the
disaster environments’ needs and actions.

j. It seems that permissions may require some more fidelity. Understand that Google
would control level 4 permissions inherent to their system, but which community of users
manages original permissions, or manages or revokes level 3 permissions? The current
design does not clearly address how permissions work. Prior to implementation, a more
in depth look at how permissions are utilized, managed, and controlled may be required.

k. A final thought is to have some capability for phone-in requests. Responders may not
have access to the system or resources in the disaster area to make the system work –
under the current model, anyone can input information in to the system in the same way
using an html template – but there may need to be discussion about a centralized call-in
center (FEMA Regional Response Coordination Center, Joint Information Center or a
Joint Field Office, etc). Because the system uses html interface, implementing this may
not be out of the realm of possibilities.

5. Conclusion. Small questions regarding second-order aspects may help to solidify a
more robust system if they are capable of being incorporated. As it is presented, the
system is ready for implementation based on the thesis’ design, concepts, and detailed
structure. This is a thoroughly researched and well written thesis that needs a prototype
built on its foundation soonest so that the program can move forward after a hand-on
test.

ROGER A. SMITH
Major, USMC

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

LIST OF REFERENCES

About Google App Eng. (n.d.). Retrieved August 6, 2010 from http://www.google.com/
support/a/bin/answer.py?hl=en&answer=91077

Amazon Web Services. (2010). Overview of Amazon Web Services, 9, 1–9.

American Logistics Aid Network Web Portal. (2010). Retrieved September 16, 2010
from http://www.alanaid.org/index.php

Bert, B. Celik, T., Hickson, I., & Lie, H. (2009). Cascading style sheets level 2 revision 1
(CSS 2.1) specification. Retrieved September 16, 2010, from
http://www.w3.org/TR/CSS2/

Booth, D. et al. (2004). Web service architecture. W3C Working Group Note 11 February
2004. Retrieved August 24, 2010, from http://www.w3.org/TR/ws-arch/

Chang, F. et al. (2006). Bigtable: A distributed storage system for structured data.
Retrieved August 5, 2010, from http://www.eecs.berkeley.edu/~culler/
cs262b/summary/bigtable.html

Chu-Carroll, M. (2010). Code in the cloud: Programming Google App Engine. Pragmatic
Programmers, LLC.

Fenton, R. (2007, February 20). DHS FEMA Region IX briefing for National Wildlife
Suppression Association. Retrieved June 13, 2010, from http://
www.nwsastraining.com/images/pdfuploads/FEMA%20Brief%20for%20NWSA.
pdf

Google App Engine. (n.d.). Retrieved September 17, 2010, from http://code.google.com/
appengine/docs/

Google Data Center Video. (2009). Retrieved August 5, 2010, from
http://blogoscoped.com/archive/2009-04-08-n39.html

Heide, E. (1989). Disaster response: Principles of preparation and coordination. Retrieved
August 6, 2010, from http://orgmail2.coe-dmha.org/dr/flash.htm

Logimax Web site. (n.d.). Retrieved September 16, 2010, from http://www.e-
logimax.com/wms-solutions/wms-foundation.php

Sanderson, D. (2010). Programming Google App Engine. Retrieved September 16, 2010,
from http://oreilly.com/catalog/9780596522735/preview#preview

SCB Software Web site. (n.d.). Retrieved September 15, 2010, from
http://home.comcast.net/~scbonanno/

 104

Severance, C. (2009). Using Google App Engine: Building Web applications. Sebastopol,
CA: O’Reilly Media

Sun Microystems, Inc. White Paper. (2009) Introduction to Cloud Computing
Architecture. Retrieved June 13, 2010, from http://webobjects.cdw.com/
webobjects/media/pdf/Sun_CloudComputing.pdf

Thibeau, D., & Reed, D. (2009, August 10). Open trust framework for open government:
Enabling citizens involvement through open identity technology. OpenID
Foundation and Information Card Foundation, 10, 1–10.

Thomas, Anisya (n.d.). Humanitarian logistics: Enabling disaster response. Fritz Institute.
Retrieved June 13, 2010, from http://www.fritzinstitute.org/
PDFs/WhitePaper/EnablingDisasterResponse.pdf

Wassenhove, Van. (2006). Blackett Memorial Lecture Humanitarian Aid Logistics:
Supply Chain Management in High Gear. Retrieved June 13, 2010, from
http://errrmsystems.pbworks.com/f/vanwassenhove.pdf

What is GIS?. (n.d.). Retrieved September 16, 2010, from
http://www.gis.com/content/what-gis

 105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Professor Peter Denning
 Naval Postgraduate School
 Monterey, California

4. Professor Dan Boger
 Naval Postgraduate School
 Monterey, California

5. Lt. Col. Karl Pfeiffer, USAF
 Naval Postgraduate School
 Monterey, California

6. Professor Man-Tak Shing
 Naval Postgraduate School
 Monterey, California

7. Mr. John Shea
 Office of the DoD CIO
 Arlington, Virginia

8. COL Kevin Foster, USA
 Office of the DoD CIO
 Arlington, Virginia

9. Professor Bret Michael
 Naval Postgraduate School
 Monterey, California

10. Professor George Dinolt
 Naval Postgraduate School
 Monterey, California

11. Professor Doron Drusinsky
 Naval Postgraduate School
 Monterey, California

 106

12. Professor Thomas Otani
 Naval Postgraduate School
 Monterey, California

13. Professor Loren Peitso
 Naval Postgraduate School
 Monterey, California

14. Mr. Alex Nelson
 Naval Postgraduate School
 Monterey, California

15. Mr. Scott J Dowell
 Computer Science Corporation
 San Diego, California

16. Mr. Michael Lee
 Touchstone Consulting Group
 Washington, D.C.

17. Ms. Karen Gordon
 Institute for Defense Analyses
 Alexandria, Virginia

18. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

19. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

20. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

21. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

